Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-05T02:58:19.504Z Has data issue: false hasContentIssue false

Mechanical properties of Ge/Si core-shell nanowires under a uniaxial tension

Published online by Cambridge University Press:  01 February 2011

Y. Yano
Affiliation:
University of Electro-Communications, Department of Mechanical Engineering and Intelligent Systems, 1-5-1 Chofugaoka, Chofu, 182-8585, Japan, 81-424-43-5393, 81-424-84-3327
T. Nakajima
Affiliation:
[email protected], University of Electro-Communications, Department of Mechanical Engineering and Intelligent Systems, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
K. Shintani
Affiliation:
[email protected], University of Electro-Communications, Department of Mechanical Engineering and Intelligent Systems, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
Get access

Abstract

The mechanical properties of Si/Ge core-shell nanowires under a unixial tension are studied using molecular-dynamics simulation. The effects of anisotropy and the fraction of the core atoms on the Young's moduli of the core-shell nanowires are examined. The values of their Young's moduli deviate from those calculated using Vegard's law. Single atom chains are formed at the final stages of elongation of the nanowires.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gudiksen, M. S., Lauhon, L. J., Wang, J., Smith, D. C., and Lieber, C. M., nature 415, 617 (2002).Google Scholar
2. Lauhon, L. J., Gudiksen, M. S., Wang, D., and Lieber, C. M., nature 420, 57 (2002).Google Scholar
3. Xiang, J., Lu, W., Hu, Y., Wu, Y., Yan, H., and Lieber, C. M., nature 441, 489 (2006).Google Scholar
4. Senger, R. T., Tongay, S., Durgun, E., and Ciraci, S., Phys. Rev. B 72, 075419 (2005).Google Scholar
5. Akiyama, T., Nakamura, K., and Ito, T., Phys. Rev. B 73, 235308 (2006).Google Scholar
6. Akiyama, T., Nakamura, K., and Ito, T., Phys. Rev. B 74, 033307 (2006).Google Scholar
7. Vo, T., Williamson, A. J., and Galli, G., Phys. Rev. B, 74, 045116 (2006).Google Scholar
8. Li, J. and Freeman, A. J., Phys. Rev. B 74, 075333 (2006).Google Scholar
9. Ponomareva, I., Menon, M., Richter, E., and Andriotis, A. N., Phys. Rev. B 74, 125311 (2006).Google Scholar
10. Musin, R. N. and Wang, X.-Q., Phys. Rev. B 74, 165308 (2006).Google Scholar
11. Raychaudhuri, S. and Yu, E. T., J. Appl. Phys. 99, 114308 (2006).Google Scholar
12. Raychaudhuri, S. and Yu, E. T., J. Vac. Sci. Technol. B 24, 2053 (2006).Google Scholar
13. Glas, F., Phys. Rev. B 74, 121302 (2006).Google Scholar
14. Shintani, K., Kameoka, S., Sato, S., and Kometani, Y., in Assembly at the Nanoscale --Toward Functional Nanostructured Materials, edited by Ozkan, C. S., Rosei, F., Lopinski, G. P., Wang, Z. L. (Mater. Res. Soc. Symp. Proc. 901E, Warrendale, PA, 2006), 0901-Ra22-19-Rb22-19.1.Google Scholar
15. Schultz, M. and Blachnik, R., in LANDOLT-BÖRNSTEIN Numerical Data and Functional Relationships in Science and Technology, New Series, edited by O, Madelung (Springer, New York, 1982), III, 17a, p. 372, p. 412.Google Scholar
16. Justo, J. F., Menezes, R. D., and Assali, L. V. C., Phys. Rev. B 75, 045303 (2007).Google Scholar