Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T02:24:48.165Z Has data issue: false hasContentIssue false

Mechanical Properties of Carbon-Implanted Niobium

Published online by Cambridge University Press:  16 February 2011

S. J. Zinkle
Affiliation:
Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6376
J. S. Huang
Affiliation:
Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94550
Get access

Abstract

Polycrystalline niobium specimens were implanted with either 200 keV carbon ions or a combination of 50, 100, and 200 keV carbon ions to peak concentrations of 0.6 to 50 at. %. Microindentation techniques were used to measure the hardness and elastic modulus of the implanted layer. Both the hardness (H) and modulus (E) showed dramatic increases due to the carbon implantation. The measured peak hardness and modulus following uniform implantation with 16 at. % C were 15× and 3× that of niobium, respectively, which is comparable to the literature values for NbC. The peak hardness and modulus for the implanted specimens were observed at an indent depth of ˜40 nm, which is about one-eighth of the depth of the implanted carbon layer. The decrease in the indentation mechanical properties at deeper indent depths is due to the interaction of long-ranging strain fields underneath the indenter with the niobium substrate.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Herman, H., Nucl. Instr. Methods 182/183, 887 (1981).Google Scholar
2. Pethica, J. B., Hutchings, R., and Oliver, W. C., Nucl. Instr. Methods 209/210, 995 (1983).Google Scholar
3. Oliver, W. C. et al., Mat. Res. Soc. Sym. Proc., vol.27, Eds. Hubler, G. K. et al. (Elsevier Science Pub. Co., 1984), p. 603.Google Scholar
4. Nastasi, M. et al., J. Mater. Res. 3, 226 (1988).Google Scholar
5. Huang, J. S., Musket, R. G., and Wall, M. A., Mat. Res. Soc. Sym. Proc., Vol.128, Eds. Rehn, L. E. et al. (MRS, Pittsburgh, 1989), p. 327.Google Scholar
6. Huang, J. S., Met. Res. Soc. Sym. Proc., Beam-Solid Interactions: Physical Phenomena (MRS, Pittsburgh, 1990); also UCRL-102036 (Oct. 30, 1989).Google Scholar
7. Pitts, E., J. Phys. D: Appl Phys. 3, 1803 (1970).Google Scholar
8. Shorshorov, M. Kh., Bulychev, S. I., and Alekhin, V. P., Sov. Phys. Doklady 26, 769 (1981).Google Scholar
9. Doerner, M. F. and Nix, W. D., J. Mater. Res. 1, 601 (1986).Google Scholar
10. Oliver, W. C., McHargue, C. J., and Zinkle, S. J., Thin Solid Films 153, 185 (1987).Google Scholar
11. Pethica, J. B. and Oliver, W. C., Mat. Res. Soc. Sym. Proc., Vol.130, Eds. Bravman, J. C. et al. (MRS, Pittsburgh, 1989), p. 13.Google Scholar
12. Metals Reference Book; 5th ed., Ed. Smithells, C. J. (Butterworths, Boston, 1976).Google Scholar
13. Engineering Property Data of Selected Ceramics, Vol.2, Carbides, Battelle Columbus Lab. Metals and Ceramics Information Center Report MCIC-HB-07 (August 1979).Google Scholar
14. Oliver, W. C. et al., Mat. Res. Soc. Sym. Proc., Vol.127, Eds. Hubler, G. K. et al. (Elsevier Science Pub. Co., 1984), p. 705.Google Scholar
15. Samuels, L. E. and Mulhearn, T. O., J. Mech. Phys. Solids 5, 125 (1957).Google Scholar
16. Zinkle, S. J. and Oliver, W. C., Oak Ridge National Laboratory Report ORNL/TM-10126 (1986).Google Scholar
17. Sundgren, J.-E. and Hentzell, H.T.G., Vac. Sci Technol. A, 4, 2259 (1986).Google Scholar