Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T17:31:42.232Z Has data issue: false hasContentIssue false

Mechanical Properties and Porosity of Organo-Silicate Glass (OSG) Low-k Dielectric Films

Published online by Cambridge University Press:  21 March 2011

J. B. Vella
Affiliation:
Motorola, DigitalDNA Laboratories, PMCL, Mesa, AZ
Q. Xie
Affiliation:
Motorola, DigitalDNA Laboratories, PMCL, Mesa, AZ
N. V. Edwards
Affiliation:
Motorola, DigitalDNA Laboratories, PMCL, Mesa, AZ
J. Kulik
Affiliation:
Motorola, DigitalDNA Laboratories, PMCL, Mesa, AZ
K. H. Junker
Affiliation:
Motorola, DigitalDNA Laboratories, APRDL, Austin, TX
Get access

Abstract

Low-k material integration issues that plague the microelectronics industry include the compromise in mechanical properties that one incurs in abandoning fully dense silica dieletrics. Typical elastic moduli of OSG low-k dieletric films are 2-10 GPa with corresponding hardnesses of 0.5 to 1.5 GPa. In the present study, the hardness and elastic modulus properties measured by nanoindentation of porous silica based low-k films are correlated with in initial estimates of density using a novel technique of spectroscopic ellispsometry. Transmission electron microscopy and X-ray photoelectron spectroscopy show the structural and chemical similarity of the films. Nanoindentation and spectroscopic ellipsometry results reflect significant deviations in material behavior from that expected from a simple model of silica (SiO2) with included voids or porosity, suggesting that the methyl groups are actively participating in the mechanical and optical properties of the material.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Oliver, W. C. and Pharr, G. M., J. Mater. Res., 7, pp.15641583 (1992).Google Scholar
2. E., Lin, W., Wu, C., Jin, Wetzel, J. T., Mat. Res. Soc. Symp. Vol. 612 (2000) D4.1.18.Google Scholar
3. Kawamura, S et al. New measurement technique of pore size distribution of porous low-k film IEEE 2001.Google Scholar
4. Baklanov, M.R. et al, Comparative study of porous SOG films with different nondestructive instrumentation, IEEE 2001.Google Scholar
5. Kondoh, E, et al., Jpn. J. Appl. Phys. Vol. 40, L323–L326 (2001).Google Scholar
6. Baklanov, M. R. et al, J. Vac. Technol. B 18(3), May/Jun (2000).Google Scholar
7. Edwards, N.V. Mat. Res. Soc. Proc.Google Scholar
8. Phani, K. K., Niyogi, S.K., J. Mater. Sci. 22 (1987) 257.Google Scholar
9. J., Kovacik, J. Mat. Sci. Lett., 18 13 (1999) 1007-1010.Google Scholar
10. Roberts, A. P., Garboczi, E. J., J. Amer. Ceram. Sci., 83, No. 12, (2000) pp.3041-3048.Google Scholar
11. Shaffer, E.O. II, Howard, K. E., Mills, M. E., Townshend, P.H., Mat. Res. Soc. Symp. Proc. Vol. 612 (2000) D1.1.18.Google Scholar
12. Volinsky, A. A., Vella, J. B., Gerberich, W. W., Submitted to Thin Solid Films, 2001.Google Scholar