Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T07:32:04.060Z Has data issue: false hasContentIssue false

Mechanical Loss Associated with Stress Anomaly in Ni3Al and Ni3(Al, Ta) Single Crystals

Published online by Cambridge University Press:  15 February 2011

E. Carreno-Morelli
Affiliation:
Ecole Polytechnique Fédérale de Lausanne, Institut de Génie Atomique, PHB Ecublens, CH- 1015 Lausanne, Switzerland
B.L. Cheng
Affiliation:
Ecole Polytechnique Fédérale de Lausanne, Institut de Génie Atomique, PHB Ecublens, CH- 1015 Lausanne, Switzerland
M. Demura
Affiliation:
National Research Institute for Metals, Mechanical Properties Division, Tsukuba, Japan
R. Schaller
Affiliation:
Ecole Polytechnique Fédérale de Lausanne, Institut de Génie Atomique, PHB Ecublens, CH- 1015 Lausanne, Switzerland
N. Baluc
Affiliation:
Centre de Recherches en Physique des Plasmas, Technologie de la Fusion, CH-1015 Lausanne, Switzerland
J. Bonneville
Affiliation:
Laboratoire de Métallurgie Physique, Université de Poitiers - SP2MI - Té1éport 2 BP 179 86960 Futuroscope Cedex, France
Get access

Abstract

The mechanical loss and shear modulus behaviors of Ni3Al and Ni3(Al, Ta) single crystals have been investigated in the temperature range 100 K – 1300 K. The mechanical loss spectra exhibit two temperature regimes, which are separated by a relaxation peak at nearly 950 K for a frequency of 1 Hz. This relaxation peak has been interpreted by the stress re-orientation of Al-Al elastic dipoles in the (111) octahedral plane [1, 2]. In the low temperature regime, corresponding to the anomaly domain of the flow stress, the mechanical loss of pre-deformed specimens exhibit a strong positive dependence on both the oscillation amplitude and the amount of pre-strain.

Pre-deformations, which were performed either at room temperature or at 100 K, yield a broad maximum in the mechanical loss that extends from nearly 100 K up to 550 K. This maximum is observable for only strain amplitudes larger than 10−4 and entirely vanishes after heating the specimens above 550 K. The increase in mechanical loss has been attributed to the bowing of the superkinks under the action of the applied stress. The gradual and irreversible decrease in damping above 300 K is interpreted in terms of pinning of the screw dislocation segments by a thermally activated process leading to the formation of Kear-Wilsdorf locks.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mourisco, A., Baluc, N., Bonneville, J., and Schaller, R., Mater. Sci. Eng. A 239–240, 281 (1997).Google Scholar
2. Numakura, H., Kurita, N., Koiwa, M., and Gadaud, P., Phil. Mag A 79, 943 (1999).Google Scholar
3. Nowick, A. S. and Berry, B. S., Anelastic Relaxation in Crystalline Solids (New York and London: Academic Press, 1972).Google Scholar
4. Cheng, B., Carreño-Morelli, E., Baluc, N., Bonneville, J., and Schaller, R., Phil. Mag A 79, 2227 (1999).Google Scholar
5. Cheng, B., Carreño-Morelli, E., Baluc, N., Bonneville, J., and Schaller, R. in High-Temperature ordered Intermetallic Alloys VIII, edited by George, E. P., Mills, M. J. and Yamaguchi, M. (Mater. Res. Soc. Proc. 552, Boston, MA, 1998) pp. KK5.38.15.Google Scholar
6. Veyssiére, P. and Saada, G., in Dislocations in Solids, Vol. 10, edited by Nabarro, F.R.N. and Duesbery, M.S. (Elsevier, Amsterdam, 1996), p. 253.Google Scholar
7. Spätig, P., PhD thesis, Ecole Polytechnique Fédérale de Lausanne, Switzerland, 1995.Google Scholar
8. Piccolo, B. Lo, PhD thesis, Ecole Polytechnique Fédérale de Lausanne, Switzerland, 1999.Google Scholar
9. Kruml, T., Martin, J.-L. and Bonneville, J., Phil. Mag. A, in press.Google Scholar
10. Demura, M. and Hirano, T., Phil. Mag. Let. 75, 143 (1997).Google Scholar
11. Golberg, D., Demura, M., and Hirano, T., J. Crystal Growth 186, 624 (1998).Google Scholar
12. Yoshida, I., Sugai, T., Tani, S., Motegi, M., Minamida, K. and Hayakawa, H., J. Phys. E: Sci. Instrum. 14, 1201 (1981).Google Scholar
13. Baur, J. and Kulik, A., J. de Phys. 44, C9357 (1983).Google Scholar
14. Timoshenko, S., Résistance des Matériaux (Librairie Polytechnique Béranger, Paris, 1963), p. 276.Google Scholar
15. Gadaud, P. and Chakib, K., Mater. Sci. Forum 119–121, 397 (1993).Google Scholar
16. Kear, B. H. and Wilsdorf, H.G.F., Trans. Metall. Soc. AIME 224, 382 (1962).Google Scholar
17. Mills, M. J., Baluc, N. and Karnthaler, H. P. in High-Temperature ordered Intermetallic Alloys III, edited by Liu, C. T., Taub, A. I., Stoloff, N. s. and Koch, C. C. (Mater. Res. Soc. Proc. 133, Boston, MA, 1989) pp. 203208.Google Scholar
18. Mills, M. J. and Chrzan, D. C., Acta Metall. Mater. 40, 3051 (1992).Google Scholar
19. Louchet, F., Phil. Mag A 72, 905 (1995).Google Scholar
20. Thornton, P. H., Davies, R. G. and Johnston, T. L., Metall. Trans. 1, 201 (1970).Google Scholar
21. Seyed-Reihani, S.M, PHD Thesis, Université Claude Bernard Lyon I, France, 1981.Google Scholar
22. Munier, A., Maamouri, M., Schaller, R., and Mercier, O., J. Nucl. Mater. 202, 54 (1993).Google Scholar