Article contents
Mechanical Characterization of Multilayer Thin Film Stacks Containing Porous Silica Using Nanoindentation and the Finite Element Method
Published online by Cambridge University Press: 01 February 2011
Abstract
Novel metal/dielectric material combinations are becoming increasingly important for reducing the resistance-capacitance (RC) interconnection delay within integrated circuits (ICs) as the device dimensions shrink to the sub-micron scale. Copper (Cu) is the material of choice for metal interconnects and SiO2 (with a dielectric constant k = ∼ 3.9) has been used as an interlevel dielectric material in the industry. To meet the demands of the international road map for semiconductors, materials with a significantly lower dielectric constant are needed. In this study, the effects of porosity and layer thicknesses on the mechanical properties of a multilayer thin film (Cu, Ta and SiO2)-substrate (Si) system are examined using nanoindentation and finite element (FE) simulations. A micromechanics model is first developed to predict the stress-strain relation of the porous silica based on the homogenization method for composite materials. An FE model is then generated and validated to perform a parametric study on nanoindentation of the Cu/Ta/SiO2/Si system aiming to predict the mechanical properties of the multilayer film stack.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2005
References
- 1
- Cited by