Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T02:15:52.083Z Has data issue: false hasContentIssue false

Mechanical Behavior of Intercalated Polycarbonate Layered-Silicate Nanocomposites

Published online by Cambridge University Press:  01 February 2011

Alex J. Hsieh
Affiliation:
U.S. Amy Research Laboratory, Polymers Research Branch, AMSRL-WM-MA, Aberdeen Proving Ground, MD 21005-5069.
Donovan Harris
Affiliation:
U.S. Amy Research Laboratory, Polymers Research Branch, AMSRL-WM-MA, Aberdeen Proving Ground, MD 21005-5069.
Paul Moy
Affiliation:
U.S. Amy Research Laboratory, Polymers Research Branch, AMSRL-WM-MA, Aberdeen Proving Ground, MD 21005-5069.
John W. Song
Affiliation:
U.S. Army Natick Soldier Center, AMSSB-RIP-B(N), Natick, MA 01760-5019.
Get access

Abstract

The effect of layered-silicates on the mechanical response of intercalated polycarbonate (PC) nanocomposites subjected to quasi-static tensile, compressive and ballistic impact testing conditions has been investigated. These nanocomposites were melt-processed, in which good dispersion of nanoclays and adequate adhesive bonding between the nanoclay and PC matrix are achieved. However, their ductility upon tensile loading is significantly affected; a transition from ductile to brittle deformation occurs at clay loading of about 3 wt.%. Stress whitening is evident in the tensile- and ballistic-tested 1.5, 2.5, and 3.5 wt.% clay nanocomposites, and is attributed to the light scattering by microvoids, which are presumably formed from either crazing of PC or debonding of the nanoclay tactoids upon mechanical deformation. The effect of clay loading on the ballistic impact strength of the monolithic PC nanocomposites and layered PC/PC-nano/PC composites is determined. Compressive yield strength measurements are obtained at strain rate of 0.001/s for the monolithic PC nanocomposites and are utilized to correlate with the ballistic impact strength of the layered PC/PC-nano/PC composites. Thermal degradation is noted in these PC nanocomposites, and its effect on the mechanical deformation is briefly discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kojima, Y., Usuki, A., Kawasumi, M., Okada, A., Fukushima, Y., Kurauchi, T., and Kamigaito, O., J. Poly. Sci., Part A, Polym. Chem., 31, 983, 1993 10.1002/pola.1993.080310418Google Scholar
2. Kojima, Y., Usuki, A., Kawasumi, M., Okada, A., Fukushima, Y., Kurauchi, T., and Kamigaito, O., J. Mater. Res., 8, 1185, 1993 10.1557/JMR.1993.1185Google Scholar
3. Kojima, Y., Usuki, A., Kawasumi, M., Okada, A., Fukushima, Y., Kurauchi, T., and Kamigaito, O., J. Appl. Poly. Sci., 49, 1259, 1993 10.1002/app.1993.070490715Google Scholar
4. Yano, K., Usuki, A., Okada, A., Kurauchi, T., and Kamigaito, O., J. Polym. Sci. A: Poly. Chem., 31, 2493, 1993 10.1002/pola.1993.080311009Google Scholar
5. Okada, A., and Usuki, A., Mat. Sci. Eng., C3, 109, 1995.10.1016/0928-4931(95)00110-7Google Scholar
6. Burnside, S. D., and Giannelis, E. P., Chem. Mater., 7, 1597, 1995 10.1021/cm00057a001Google Scholar
7. Akelah, A., and Moet, A., J. Mater. Sci., 31, 3589, 1996 10.1007/BF00360767Google Scholar
8. Giannelis, E. P., Adv. Mater., 8, 29, 1996 10.1002/adma.19960080104Google Scholar
9. Lan, T., Kaviratna, P. D., and Pinnavaia, T. J., Chem. Mater., 8, 2628, 1996 Google Scholar
10. Messersmith, P., and Giannelis, E. P., Chem. Mater., 10, 1820, 1998 Google Scholar
11. Wang, Z., Pinnavaia, T. J., Chem. Mater., 10, 3769, 1998 10.1021/cm980448nGoogle Scholar
12. Ke, Y., Long, C., and Qi, Z., J. Appl. Poly. Sci., 71, 1139, 1999 10.1002/(SICI)1097-4628(19990214)71:7<1139::AID-APP12>3.0.CO;2-E3.0.CO;2-E>Google Scholar
13. LeBaron, P. C., Wang, Z., and Pinnavaia, T. J., Appl. Clay Sci., 15, 11, 1999 10.1016/S0169-1317(99)00017-4Google Scholar
14. Giannelis, E. P., Krishnamoorti, R., and Manias, E., Adv. Poly. Sci., 138, 108, 1999 Google Scholar
15. Dietsche, F., and Mülhaupt, R., Polym. Bull., 43, 395, 1999 10.1007/s002890050627Google Scholar
16. Alexandre, M., and Dubois, P., Mater. Sci. Eng., 28, 1, 2000 10.1016/S0927-796X(00)00012-7Google Scholar
17. Gilman, J. W., Jackson, C. L., Morgan, A. B., Harris, R., Manias, E., Giannelis, E. P., and Wuthenow, M., Chem. Mater., 12, 1866, 2000 10.1021/cm0001760Google Scholar
18. Dietsche, F., Thomann, Y., Thomann, R., and Mulhaupt, R., J. Apply. Poly. Sci., 75, 396, 2000 10.1002/(SICI)1097-4628(20000118)75:3<396::AID-APP9>3.0.CO;2-E3.0.CO;2-E>Google Scholar
19. Brown, J. M., Curliss, D. B., and Vaia, R. A., Chem. Mater., 12, 3370, 2000 Google Scholar
20. Jana, S. C., and Jain, S., Polymer, 42, 6897, 2001 10.1016/S0032-3861(01)00175-6Google Scholar
21. Bandyopadhyay, S., Hsieh, A. J., and Giannelis, E. P., ACS Symposium Series, 804, 15, 2001 10.1021/bk-2002-0804.ch003Google Scholar
22. Huang, X., Brittain, W. J., Macromolecules., 34, 3255, 2001 10.1021/ma001670sGoogle Scholar
23. Zerda, A. S., and Lesser, A. J., J. Poly. Sci., Part B: Poly. Phys., 39, 1137, 2001 10.1002/polb.1090Google Scholar
24. Zeng, C., and Lee, L. J., Macromolecules., 34, 4098, 2001 10.1021/ma010061xGoogle Scholar
25. Hsieh, A. J., Song, J. W., Nebo, J., and Singh, A., SPE ANTEC, 2, 2185, 2001 Google Scholar
26. Hsieh, A. J., and Song, J. W., J. Reinf. Plast. & Comp., 20, 3, 239, 2001 10.1177/073168401772678274Google Scholar
27. Kinloch, A. J., Young, R. J., in Fracture Behavior of Polymers, Applied Science Publishers, 107181, 1983.Google Scholar
28. Kambour, R. P., J. Poly. Sci. Macromol. Rev., 7, 1, 1973 10.1002/pol.1973.230070101Google Scholar
29. Pitman, G. L., Ward, I. M., and Duckett, R. A., J. Mat. Sci., 13, 2092, 1978 10.1007/BF00541662Google Scholar
30. Hsieh, A. J., and Song, J. W., Poly. Eng. Sci., submitted, 2002.Google Scholar
31. Hsieh, A. J., Napadensky, E., and Teets, A., Army Research Laboratoty Technical Report, in preparation, 2002.Google Scholar