Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-19T06:46:52.400Z Has data issue: false hasContentIssue false

Mechanical and Dielectric Properties of Low Permittivity Dielectric Materials

Published online by Cambridge University Press:  15 February 2011

A. Alptekin
Affiliation:
Département de génie physique and Groupe des Couches Minces-GCM, École Polytechnique de Montréal, P.O. Box 6079, Station Centre Ville Montréal, Québec, Canada H3C 3A7
G. Czeremuszkin
Affiliation:
Département de génie physique and Groupe des Couches Minces-GCM, École Polytechnique de Montréal, P.O. Box 6079, Station Centre Ville Montréal, Québec, Canada H3C 3A7
L. Martinu
Affiliation:
Département de génie physique and Groupe des Couches Minces-GCM, École Polytechnique de Montréal, P.O. Box 6079, Station Centre Ville Montréal, Québec, Canada H3C 3A7
M. Meunier
Affiliation:
Département de génie physique and Groupe des Couches Minces-GCM, École Polytechnique de Montréal, P.O. Box 6079, Station Centre Ville Montréal, Québec, Canada H3C 3A7
E. Sacher
Affiliation:
Département de génie physique and Groupe des Couches Minces-GCM, École Polytechnique de Montréal, P.O. Box 6079, Station Centre Ville Montréal, Québec, Canada H3C 3A7
M. DiRenzo
Affiliation:
Département de chimie, Université de Montréal, P.O. Box 6128, Station Centre Ville Montréal, Québec, Canada H3C 2J7
Get access

Abstract

The dielectric and mechanical properties of low permittivity dielectric/metal system consisting of fluoropolymers and copper were studied. The types of polymers in this study include sputtered Teflon, plasma-deposited fluoropolymers and the soluble Teflon AF1600. All these fluoropolymers have dielectric constants below 2.0 and dissipation factors below 0.001. Copper was either evaporated or sputtered. Adhesion of copper to fluoropolymers was studied using scratch and peel tests. Different thermal treatment techniques were applied to enhance adhesion, including preannealing in vacuum or in atmosphere, as well as postannealing in vacuum. The results show generally poor adhesion for evaporated copper, with substantial improvement for sputtered copper; however thermal treatments enhance adhesion in some cases. FTIR, surface tension and XPS experiments were carried out in an effort to understand these effects. Our findings will be discussed in terms of the various effects contributing to copper/fluoropolymer adhesion.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Murarka, S. P., Gutmann, R. J., Kaloyeros, A. E. and Lanford, W. A., Thin Solid Films 236, 257 (1993).Google Scholar
[2] Murarka, S. P. and Hymes, S. W., Crit. Rev. Solid State Mater. Sci. 20, 87 (1995).Google Scholar
[3] Gutmann, R. J., Chow, T. P., Lakshminarayanan, S., Price, D. T., Steigerwald, J. M., You, Lu and Murarka, S. P., Thin Solid Films 270, 475 (1995).Google Scholar
[4] Klemberg-Sapieha, J. E., Shi, M. K., Martinu, L. and Wertheimer, M.R., Proc. Int. Conf Plasma-CIP ‘95, Antibes, France, June 1995, p. 151.Google Scholar
[5] Gutmann, R. J., Chow, T. P., Duquette, D. J., Lu, Toh-Ming, McDonald, J. F. and Murarka, S. P., MRS Proc. 381, 179 (1995).Google Scholar
[6] Shi, M.K., Klemberg-Sapieha, J.E., Czeremuszkin, G., Martinu, L. and Sacher, E., Proc. Int. Symp. on Plasma Chemistry ISPC 12, Minneapolis, August 1995, p.51.Google Scholar
[7] Martinu, L., Biederman, H. and Nedbal, J., Thin Solid Films 136, 11 (1986).Google Scholar
[8] Hetzler, U. and Kay, Eric, J. Appl. Phys. 49, 5617 (1978).Google Scholar
[9] Biederman, H., Vacuum 31, 285 (1981)Google Scholar
[10] Nason, T. C., Moore, J. A. and Lu, T. M., Appl. Phys. Lett. 60, 1866 (1992).Google Scholar
[11] Giegengack, H. and Hinze, D., Phys. Stat. Sol. (a) 8, 513 (1971).Google Scholar
[12] Martinu, L., Thin Solid Films 140, 307 (1986).Google Scholar