Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T15:19:39.371Z Has data issue: false hasContentIssue false

Mechanical Alloying of Pet and Pet/Vectra Blends

Published online by Cambridge University Press:  10 February 2011

C. M. Balik
Affiliation:
Dept. of Materials Science and Engineering, Box 7907, North Carolina State University, Raleigh, NC 27695.
C Bai
Affiliation:
Dept. of Materials Science and Engineering, Box 7907, North Carolina State University, Raleigh, NC 27695.
C.C Koch
Affiliation:
Dept. of Materials Science and Engineering, Box 7907, North Carolina State University, Raleigh, NC 27695.
R.J Spontak
Affiliation:
Dept. of Materials Science and Engineering, Box 7907, North Carolina State University, Raleigh, NC 27695.
C. K. Saw
Affiliation:
Hoechst-Celanese Research Division, 86 Morris Avenue, Summit, NJ 07901
Get access

Abstract

Mechanical alloying represents a potential method for producing finely dispersed alloys of normally incompatible polymers. In this paper, PET and blends of PET with a Vectra thermotropic copolyester have been processed via high energy ball milling at room temperature (ambimilled) and at liquid nitrogen temperatures (cryomilled). Milled powders and compacted disks have been characterized using molecular weight, density and hardness measurements, aswell as DSC, WAXS, TEM and FTIR.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Koch, C.C., in Materials Science and Technology, Volume 15 (Cahn, R.W., ed.) VCH, Weinheim, 1991, p. 583.Google Scholar
2. Benjamin, J.S., Metall. Trans., 1, 2943 (1970).Google Scholar
3. Koch, C.C., Cavin, O.B., McKamey, C.G., and Scarbrough, J.O., Appl. Phys. Lett. 43, 1017 (1983).Google Scholar
4. Shaw, W.J.D., Pan, J. and Growler, M.A., in Proc. 2nd Internat. Conf. Struct. Appi Mech. Alloying (De Barbadillo, J.J., Fores, F.H. and Schwarz, R., eds.) ASM International, Materials Park, OH, 1993, p. 431.Google Scholar
5. Pan, J. and Shaw, W.J.D., in Proc. 24th Internat. SAMPE Conf. (Reinhart, T.S., Rosenow, M., Cull, R.A. and Struckholt, E., eds.) 24, T762 (1992).Google Scholar
6. Pan, J. and Shaw, W.J.D., Microstruct. Sci. 20, 351 (1993).Google Scholar
7. Pan, J. and Shaw, W.J.D., Microstruct. Sci. 19, 659 (1992).Google Scholar
8. Pan, J. and Shaw, W.J.D., J. Appl. Polym. Sci. 52, 507 (1994).Google Scholar
9. Shaw, W.J.D. and Gowler, M.A.,, in Proc. 1st Internat. Conf. Mater. Prop. (Henein, H. and Oks, T., eds.) TMS, Warrendale, PA, 1993, p. 687.Google Scholar
10. Pan, J. and Shaw, W.J.D., Microstruct. Sci. 21, 95 (1994).Google Scholar
11. Ikekawa, H.A., Int. J. Mechanochem. Mech. Alloying 1, 42 (1994).Google Scholar
12. Castricum, H.L., Yang, H., Bakker, H. and Van Deursen, J.H., ISMANAM ‘96, Rome, May 20–24, 1996 to be published in the conference proceedings.Google Scholar
13. Ishida, T., J. Mater. Sci. Lett. 13, 623 (1994).Google Scholar
14. Farrell, P., Kander, R.G. and Aning, A.O., J. Mater. Sym. Proc. (submitted).Google Scholar
15. Mehta, A. et al., J. of Polymer Sci., Polymer Physics Edition 16, 289296 1978.Google Scholar
16. Ward, I. W., Nature 180, 141142 1957.Google Scholar
17. Wallach, M.L., Die Makromolekulare Chemie 103, 1926 1967.Google Scholar
18. Lopez, J., Polymer Testing 12, 437458 1993.Google Scholar
19. Metals Handbook, 9th edition, Vol. 8, Mechanical Testing-Hardness Testing.Google Scholar
20. Willett, J.L., J. Polym. Sci., Polym. Phys. Ed. 24, 2583 (1986).Google Scholar
21. Wool, P., and Rockhill, A.T., J. Macromol. Sci.-Phys. B20, 85 (1981).Google Scholar
22. Misra, A. and Stein, R.S., J. Polym. Sci., Polym. Phys. Ed. 17, 235257 (1979).Google Scholar
23. Jabarin, S.A., Polym. Eng. Sci. 32, 1341 (1992).Google Scholar