Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T01:39:18.358Z Has data issue: false hasContentIssue false

Measuring the Young’s Relaxation Modulus of PDMS Using Stress Relaxation Nanoindentation

Published online by Cambridge University Press:  31 January 2011

Ping Du
Affiliation:
[email protected], Boston University, Mechanical Engineering, Boston, Massachusetts, United States
Hongbing Lu
Affiliation:
[email protected], University of North Texas, Mechanical and Energy Engineering, Denton, Texas, United States
Xin Zhang
Affiliation:
[email protected], Boston University, Mechanical Engineering, Boston, Massachusetts, United States
Get access

Abstract

The Young’s relaxation modulus of Polydimethylsiloxane (PDMS) film specimens was measured by the nanoindenter with a flat punch indenter. In the stress relaxation test, the initial ramp part was carefully considered to develop an accurate viscoelastic contact model. This model was used to fit the load-time data from the experimental tests. The resulting relaxation function was expressed by a general Maxwell equation. In addition, a case study of PDMS micropillar bending tests was performed, and the viscoelastic constitutive law was applied to develop an analytical solution of the reaction force. The results show that the reaction force calculated from the corrected model is generally agreed well with the experimental data.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Yamada, K. M. and Olden, K. Nature 275, 179184 (1978).Google Scholar
2 Tan, J. L. Tien, J. Pirone, D. M. Gray, D. S. Bhadriraju, K. and Chen, C. S. Proc. Natl. Acad. Sci. USA. 100, 14841489 (2003).Google Scholar
3 Zheng, X. and Zhang, X. J. Micromech. Microeng. 18, 125006 (2008).Google Scholar
4 Zheng, X. and Zhang, X. Appl. Phys. Lett. 93, 164106 (2008).Google Scholar
5 Tanaka, Y. Sato, K. Shimizu, T. Yamato, M. Okano, T. Manabe, I. Nagai, R. and Kitamori, T. Lab Chip 8, 5861 (2008).Google Scholar
6 Lin, I. K. Liao, Y. M. Liu, Y. Chen, K. S. and Zhang, X. Proc. Mater. Res. Soc., Boston, MA, 1052, 8186 (2007).Google Scholar
7 Lin, I. K. Kuang-Shun, O., Yen-Ming, L., Yan, L. Kuo-Shen, C. and Xin, Z. J. Microelectromech. Syst. 18, 10871099 (2009).Google Scholar
8 Harding, J. W. and Sneddon, I. N. Proc. Camb. Philol. Soc. 41, 16 (1945).Google Scholar
9 Brinson, H. F. and Brinson, L. C. Polymer Engineering Science and Viscoelasticity, An Introduction. (2008).Google Scholar
10 Lu, H. Wang, B. Ma, J. Huang, G. and Viswanathan, H. Mech. Time-Depend. Mater. 7, 189207 (2003).Google Scholar
11 Mark, J. E. Polymer Data Handbook. (Oxford Univeristy Press, 1999).Google Scholar
12 Armani, D. C. Liu and Aluru, N. Proc. IEEE MEMS'99, Orlando, Fl, 222227 (1999).Google Scholar
13 Lin, I. K. Liao, Y. M. Liu, Y. Ou, K. S. Chen, K. S. and Zhang, X. Appl. Phys. Lett. 93, 251907 (2008).Google Scholar
14 Xiang, Y. and LaVan, D. A. Appl. Phys. Lett. 90, 133901 (2007).Google Scholar
15 Timoshenko, S. and Gere, J. M. Mechanics of Materials. (Van Nostrand Reinhold, New York, 1972).Google Scholar