Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-20T11:38:08.907Z Has data issue: false hasContentIssue false

Measurements of Ion-Implantation Damage in GaP*

Published online by Cambridge University Press:  15 February 2011

D. R. Myers
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
P. S. Peercy
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
P. L. Gourley
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
Get access

Abstract

We have applied stress measurements using the cantilever beam technique and Raman spectroscopy to characterize the dose dependence of damage production for He+, C+, or Ar+ implants into GaP. Stress increases monotonically with dose until a speciesdependent critical dose is reached. Above that dose, the material yields at an integrated lateral stress of ∼2×105 dynes/cm2 corresponding to an expansion of ∼1% in the implanted volume. The dose dependence of stress scales well with the volume density of ion energy deposited into atomic collisions. Raman measurements indicate that the material is still crystalline when the yield stress is reached.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

This work performed at Sandia National Laboratories supported by the U.S. Department of Energy under contract number DE-AC04-76DP00789.

References

REFERENCES

1. Myers, D. R., Biefeld, R. M., Zipperian, T. E., and Dawson, L. R., Electron.Letters 18, 323 (1982).Google Scholar
2. Whan, R. E. and Arnold, G. W., Appl. Phys. Lett. 17, 378 (1970).Google Scholar
3. Speriosu, V. S., Paine, B. M., Nicolet, M-A., and Glass, H. L., Appl. Phys. Lett. 40, 604 (1982).Google Scholar
4. EerNisse, E. P., Appl. Phys. Lett. 18, 581 (1971).Google Scholar
5. Myers, D. R., Wilson, R. G., and Comas, J., J. Vac. Sci. Technol. 16, 1893(1979).Google Scholar
6. Biersack, J. P. and Haggmark, L. G., Nucl. Instr. Methods 174, 257 (1980).Google Scholar
7. Myers, D. R. and Gourley, P. L., J. Electrochem. Soc., to be published.Google Scholar
8. Simmons, G. and Wang, H., Single Crystal Elastic Constants and Calculated Aggregate Properties, 2nd ed. (MIT Press, Cambridge MA 1971) p. 28, p. 186.Google Scholar
9. Crowder, B. L., Smith, J. E. Jr., Brodsky, M. H., and Nathan, M. I. in: Ion Implantation in Semiconductors, Ruge, I. and Graul, J., eds. (Springer Verlag, NY 1971) pp. 255261.Google Scholar
10. Balslev, I., Phys. Stat. Solidi b 61, 207 (1974).Google Scholar