Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T02:38:12.589Z Has data issue: false hasContentIssue false

Measurement of Transit Time and Carrier Velocity Under High Electric Field in III-Nitride P-I-N Diodes

Published online by Cambridge University Press:  15 March 2011

M. Wraback
Affiliation:
U.S. Army Research Laboratory, Sensors and Electron Devices Directorate, AMSRL-SE-EM, 2800 Powder Mill Road, Adelphi, MD 20783
H. Shen
Affiliation:
U.S. Army Research Laboratory, Sensors and Electron Devices Directorate, AMSRL-SE-EM, 2800 Powder Mill Road, Adelphi, MD 20783
J.C. Carrano
Affiliation:
Photonics Research Center, Department of Electrical Engineering and Computer Science, U.S. Military Academy, West Point, NY 10996
T. Li
Affiliation:
Microelectronics Research Center, Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712
J.C. Campbell
Affiliation:
Microelectronics Research Center, Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712
Get access

Abstract

We present an optically-detected time-of-flight technique with femtosecond resolution that monitors the change in the electroabsorption due to charge transport in a p-i-n diode, and show how it may be used to determine the electron transit time and velocity-field characteristic in GaN at room temperature. The transit time drops with increasing electric field E in the intermediate field regime (50-100kV/cm), and the electron velocity possesses a weak, quasi-linear dependence on E attributed to polar optical phonon scattering. In the high field regime the transit time and the electron velocity gradually become independent of E. The peak electron velocity of 1.9×107 cm/sec, corresponding to a transit time of ∼2.5 ps across the 0.53 μm depletion region, is attained at ∼ 225 kV/cm. The experimental results are in qualitative agreement with theoretical steady-state velocity-field characteristics found in the literature.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kolnik, J., Oĝuzman, I.H., Brennan, K.F., Wang, R., Ruden, P.P., and Wang, Y., J. Appl. Phys. 78, 1033 (1995).Google Scholar
2. Bhapkar, U.V. and Shur, M.S., J. Appl. Phys. 82, 1649 (1997).Google Scholar
3. Albrecht, J.D., Wang, R.P., Ruden, P.P., Farahmand, M., and Brennan, K.F., J. Appl. Phys. 83, 4777 (1998).Google Scholar
4. Foutz, B.E., O'Leary, S.K., Shur, M.S., and Eastman, L.F., J. Appl. Phys. 85, 7727 (1999).Google Scholar
5. Khan, M.A., Chen, Q., Shur, M.S., Dermott, B.T., Higgins, J.A., Burm, J., Schaff, W.J., and Eastman, L.F., IEEE Electron Device Lett. 17, 584 (1996).Google Scholar
6. Burm, J., Chu, K., Schaff, W.J., Eastman, L.F., Khan, M.A., Chen, Q., Yang, J.W., and Shur, M.S., IEEE Electron Device Lett. 18, 141 (1997).Google Scholar
7. Wu, Y.-F., Keller, B.P., Keller, S., Nguyen, N.X., Le, M., Nguyen, C., Jenkins, T.J., Kehias, L.T., DenBaars, S.P., and Mishra, U.K., IEEE Electron Device Lett. 18, 438 (1997).Google Scholar
8. Ping, A.T., Chen, Q., Yang, J.W., Khan, M.A., and Adesida, I., IEEE Electron Device Lett. 19, 54 (1998).Google Scholar
9. Carrano, J.C., Li, T., Eiting, C.J., Dupuis, R.D., and Campbell, J.C., J. Electron. Mat. 28, 325 (1999).Google Scholar
10. Carrano, J.C., Li, T., Brown, D.L., Grudowski, P.A., Eiting, C.J., Dupuis, R.D., and Campbell, J.C., Appl. Phys. Lett. 73, 2405 (1998).Google Scholar
11. Carrano, J.C., Li, T., Brown, D.L., Grudowski, P.A., Eiting, C.J., Dupuis, R.D., and Campbell, J.C., Electron. Lett. 34, 1779 (1998).Google Scholar
12. Shank, C.V., Fork, R.L., Greene, B.I., Reinhart, F.K., and Logan, R.A., Appl. Phys. Lett. 38, 104 (1981).Google Scholar
13. Hu, B.B., Souza, E.A. de, Knox, W.H., Cunningham, J.E., Nuss, M.C., Kuznetsov, A.V., and Chuang, S.L., Phys. Rev. Lett. 74, 1689 (1995).Google Scholar
14. Sha, W., Rhee, J.-K., Norris, T.B., and Schaff, W.J., IEEE J. Quantum Electron. 28, 2445 (1992), and references therein.Google Scholar
15. Schiff, E.A., Devlen, R.I., Grahn, H.T., Tauc, J., and Guha, S., Appl. Phys. Lett. 54, 1911 (1989).Google Scholar
16. Wraback, M., Shen, H., Carrano, J.C., Li, T., Campbell, J.C., Schurman, M.J., and Ferguson, I.T., Appl. Phys. Lett. 76, 1155 (2000).Google Scholar
17. Li, T., Carrano, J.C., Campbell, J.C., Schurman, M., and Ferguson, I., IEEE J. Quantum Electron. 35, 1203 (1999).Google Scholar
18. Oĝuzman, I.H., Kolnik, J., Brennan, K.F., Wang, R., Fang, T.-N., and Ruden, P.P., J. Appl. Phys. 80, 4429 (1996).Google Scholar
19. Brazel, E.G., Chin, M.A., Narayanamurti, V., Kapolnek, D., Tarsa, E.J., and DenBaars, S.P., Appl. Phys. Lett. 70, 330 (1997).Google Scholar