Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-29T07:45:00.104Z Has data issue: false hasContentIssue false

Measurement of Nonuniform Stresses in Semiconductors by the Micro-Raman Method

Published online by Cambridge University Press:  10 February 2011

K. Pinardi
Affiliation:
Chalmers University of Technology, Department of Physics, S-41296 Göteborg, SWEDEN.
S. C. Jain
Affiliation:
IMEC, Kapeldreef 75, 3001 Leuven, Belgium.
H. E. Maes
Affiliation:
IMEC, Kapeldreef 75, 3001 Leuven, Belgium.
R. Van Overstraeten
Affiliation:
IMEC, Kapeldreef 75, 3001 Leuven, Belgium.
M. Willander
Affiliation:
Chalmers University of Technology, Department of Physics, S-41296 Göteborg, SWEDEN.
A. Atkinson
Affiliation:
Department of Materials, Imperial College of Science, Technology and Medicine, London.
Get access

Abstract

Micro-Raman measurements axe performed with a focused laser beam. Because of its finite diameter (∼ 1 μm) and penetration depth, the laser beam samples a “large volume” of the sample. In a nonuniformly strained sample, spectra originating from different points are different. Therefore the observed spectrum depends on both the strain distribution in the sample and the absorption coefficient of the laser light. We describe a method to calculate the Raman spectra taking these factors into account. The calculated spectra show excellent agreement with the experimental results.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Jain, S. C., Germanium-Silicon Strained Layers and Heterostructures, Advances in Electronics and Electron Physics series, (Supplement 24) (Academic Press, Boston 1994).Google Scholar
2.Jain, S. C., Maes, H., Pinardi, K., and Wolf, I. De, J. Appl. Phys. 79, 8145 (1996).Google Scholar
3.Dietrich, B., Bugiel, E., Frankenfeldt, H., Harker, A. H., Jagdhold, U., Tillack, B.. and Wolff, A., Solid-State Electronics 40, 307 (1996).Google Scholar
4.Inoue, Y., Nakashima, S., Mitsuishi, A., Nishimura, T., and Akasaka, Y., Jpn. J. Appl. Phys. 25, 798 s(1986).Google Scholar
5.Olego, D. J., Shahzad, K., Petruzzello, J., and Cammack, D. A., Phys. Rev. B 36, 7674 (1987).Google Scholar
6.Jain, S. C., Pinardi, K., Willander, M.Atkinson, A., Maes, H. E., and Van Overstraeten, R., Semicond. Sci. Technol. 12, 1507 (1997); K. Pinardi, S. C. Jain, H. E. Maes, R. Van Overstraeten, M. Willander, and A. Atkinson, to be published.Google Scholar
7.Lipkin, D. M. and Clarke, D. R., J. Appl. Phys. 77, 1855 (1995).Google Scholar
8.Anastassakis, E., and Liarokapis, E., J. Appl. Phys. 62, 3346 (1987).Google Scholar
9.Tu, K.-N., Mayer, J. W. and Feldman, L. C., Electronic Thin Film Science for Electrical Engineers and Material Scientists, (Maxwell Publishing Co., New York 1992).Google Scholar
10.Sauter, A., and Nix, W. D., IEEE Trans. Components, Hybrids and Manuf. Tech. 15, 594, (1992).Google Scholar
11.Wolf, I. De, Maes, H. E., and Jones, S. K., J. Appl. Phys. 79, 7148 (1996).Google Scholar
12.Hu, S. M., J. Appl. Phys. 70, R53 (1991).Google Scholar
13. TMA TSUPREM-4, Two-dimensional process simulation program, Version 6.2 (Technology Modelling Associates, Inc., Palo Alto 1995).Google Scholar
14.Kasper, E., Kibbel, H., Jorke, H., Brugger, H., Friess, E., and Abstreiter, G., Phys. Rev. B 38, 3599 (1988).Google Scholar
15.Properties of Silicon, EMIS Data reviews series no 4, (INSPEC, London 1988); Properties of Strained and Relaxed Silicon Germanium, EMIS Data reviews series no 12, (INSPEC, London 1995).Google Scholar
16.Ma, Q., Chiras, S., Clarke, D. R., and Suo, Z., J. Appl. Phys. 78, 1614 (1995).Google Scholar