Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-28T23:21:52.133Z Has data issue: false hasContentIssue false

Measurement of Lateral Dopant Diffusion in Rapid Thermal Annealed W-Polycide Gate Structures

Published online by Cambridge University Press:  10 February 2011

T. Schiml
Affiliation:
Bell Laboratories, Lucent Technologies, Murray Hill, NJ
J. Bevk
Affiliation:
Bell Laboratories, Lucent Technologies, Murray Hill, NJ
M. Furtsch
Affiliation:
Bell Laboratories, Lucent Technologies, Murray Hill, NJ
G. E. Georgiou
Affiliation:
Bell Laboratories, Lucent Technologies, Murray Hill, NJ
R. Cirelli
Affiliation:
Bell Laboratories, Lucent Technologies, Murray Hill, NJ
W. M. Mansfield
Affiliation:
Bell Laboratories, Lucent Technologies, Murray Hill, NJ
P. J. Silverman
Affiliation:
Bell Laboratories, Lucent Technologies, Murray Hill, NJ
H. S. Lufrman
Affiliation:
Bell Laboratories, Lucent Technologies, Breinigsville, PA
Get access

Abstract

Lateral dopant diffusion is a well known problem in dual-gate W-polycide CMOS devices. We have recently demonstrated that RTA processing helps to alleviate this problem and at the same time ensures sufficient dopant activation. However, due to the complex micro-structural changes in both poly-Si and WSix (x˜2.5) layers during the RTA process, the time dependence of the diffusion processes and dopant distribution are difficult to predict. Consequently, the process optimization and device simulations are rather unreliable. We describe a new experimental technique to measure lateral dopant diffusion and 2-dimensional dopant distribution in RTA processed W-polycide structures using conventional SIMS analysis of lithographically defined test structures. Our experiments show that the technique is capable of measuring lateral dopant diffusion over distances between one and tens of microns without losing the vertical resolution of conventional SIMS profiling. The technique can be used to study diffusion processes in a variety of materials and multi-layer structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hillenius, S.J., Liu, R., Georgiou, G. E., Field, R. L., Williams, D. S., Kornblit, A., Boulin, D. M., Johnston, R. L. and Lynch, W. T., Technical Digest of IEEE IEDM 1986, p. 252.Google Scholar
2. Fujii, T., Hashimoto, S. and Naito, Y., Technical Digest of IEEE IEDM, 1992, p. 845.Google Scholar
3. Bevk, J., Georgiou, G. E., Frei, M., Silverman, P. J., Lloyd, E. J., Kim, Y., Luftman, H., Furtsch, M., Schiml, T. and Hillenius, S. J., Technical Digest of IEEE IEDM, 1995, p. 893; J. Bevk, M. Furtsch, G. E. Georgiou, S. J. Hillenius, D. Schielein, T. Schiml and P. J. Silverman, these proceedings.Google Scholar
4. Georgiou, G. E., Luftman, H., Heimbrock, L. A., Hillenius, S. J., VMIC Conference, 1993, p. 499.Google Scholar
5. Pan, P., Hsieh, N., Geipel, H. J. and Slusser, G. J., J. Appl. Phys. 53 (4), April 1982, p. 3059.Google Scholar
6. Suzuki, K., Horie, H., Yamashita, Y. and Kataoka, Y., Appl. Phys. Lett. 57 (10), Sept. 1990, p. 1018.Google Scholar
7. Bevk, J. et al., unpublished.Google Scholar