Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T02:03:35.996Z Has data issue: false hasContentIssue false

MBE Growth of GaAs on an Exactly (001)-Oriented Si Substrate and Selective Epitaxial Growth for Fabrication of Modulation-Doped Fet's

Published online by Cambridge University Press:  21 February 2011

H. Noge
Affiliation:
Toyota Central Research and Development Laboratories Inc., Nagakute-cho, Aichi-gun, Aichi-ken 480-11, Japan
H. Kano
Affiliation:
Toyota Central Research and Development Laboratories Inc., Nagakute-cho, Aichi-gun, Aichi-ken 480-11, Japan
M. Hashimoto
Affiliation:
Toyota Central Research and Development Laboratories Inc., Nagakute-cho, Aichi-gun, Aichi-ken 480-11, Japan
I. Igarashi
Affiliation:
Toyota Central Research and Development Laboratories Inc., Nagakute-cho, Aichi-gun, Aichi-ken 480-11, Japan
Get access

Abstract

GaAs layers free of antiphase domains (APD's) have been grown by molecular beam epitaxy (MBE) on nominally (001)-oriented Si substrates. This is achieved by preheating the substrates at 950°C over 60 min or at 1000°C over 5 min in an ultrahigh vacuum. The maximum Hall mobility at 293 K is 5300 cm2/Vs for the APD-free GaAs layer doped with Si at a concentration of 2×1016 cm−3. Selective epitaxial growth of GaAs has been carried out on a Si substrate pattrened with SiO2, which was formed by wet O2 oxidation. By choosing an appropriate thickness of the SiO2 layer, thzxcSe warpage of wafers can be reduced to zero. While single-crystalline GaAs is grown on Si-exposed areas, highly-resistive (p ≧ 105 Ωcm) poly-crystalline GaAs is deposited on SiO2. This technique has been successfully applied for the device isolation of modulation-doped FET's (MODFET's, HEMT's, etc.) on Si without mesa-etching. The transconductance of the MODFET with a 3 μm-long gate reaches 88 mS/mm at 293 K.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fischer, R., Morkog, H., Neumann, D.A., Zabel, H., Choi, C., Otsuka, N., Longerbone, M., and Erickson, L.P., J. Appl. Phys. 60, 1640 (1986).Google Scholar
2. Kawabe, M. and Ueda, T., Jpn. J. Appl. Phys. 25, L285 (1986).Google Scholar
3. Ueda, T., Nishi, S., Kawarada, Y., Akiyama, M., and Kaminishi, K., Jpn. J. Appl. Phys. 25, L789 (1986).Google Scholar
4. Sakai, T., Soga, T., Takeyasu, M., and Umeno, M., in Heteroepitaxy on Silicon, edited by Fan, J.C.C. and Poate, J.M. (Mater. Res. Soc. Proc. 67, Pittsburgh, PA 1986) pp. 1526.Google Scholar
5. Metze, G.M., Choi, H.K., and Tsaur, B-Y., Appl. Phys. Lett. 45, 1107 (1984).Google Scholar
6. Nonaka, T., Akiyama, M., Kawarada, Y., and Kaminishi, K., Jpn. J. Appl. Phys. 23, L919 (1984).Google Scholar
7. Fischer, R.J., Chand, N., Kopp, W.F., Peng, C-K., Morkoç, H., Gleason, K.R., and Scheitlin, D., IEEE Trans. Electron Devices ED–29, 206 (1986); M.I. Aksun, H. Morkog, L.F. Lester, K.H.G. Duh, P.M. Smith, P.C. Chao, M. Longerbone, and L.P. Erickson, Appl. Phys. Lett. 49, 1654 (1986).Google Scholar
8. Fischer, R., Henderson, T., Klem, J., Masselink, W.T., Kopp, W., Morkoç, H., and Litton, C.W., Electron. Lett. 20, 945 (1984); D.K. Arch, H. Morkoç, P.J. Vold, and M. Longerbone, IEEE Electron Device Lett. EDL-7, 635 (1986).Google Scholar
9. Sakai, S., Appl. Phys. Lett. 51, 1069 (1987).Google Scholar
10. Yao, T., Okada, Y., Kawanami, H., Matsui, S., Imagawa, A., and Ishida, K., in Heteroepitaxy on Silicon II, edited by Fan, J.C.C., Phillips, J.M., and Tsaur, B-Y. (Mater. Res. Soc. Proc. 91, Anaheim, CA 1987) pp. 6368.Google Scholar
11. Matyi, R.J., Shichijo, H., Moore, T.M., and Tsai, H-L., Appl. Phys. Lett. 51, 18 (1987).Google Scholar
12. Lee, H.P., Wang, S., Huang, Y-H., and Yu, P., Appl. Phys. Lett. 52, 215 (1988).Google Scholar
13. Soga, T., Sakai, S., Umeno, M., and Hattori, S., Jpn. J. Appl. Phys. 26, 252 (1987).Google Scholar
14. Choi, H.K., Turner, G.W., and Tsaur, B-Y., IEEE Electron Device Lett. EDL–7, 241 (1986).Google Scholar
15. Sakai, S., Matyi, R.J., and Shichijo, H., Appl. Phys. Lett. 51, 1913 (1987); J. Appl. Phys. 63, 1075 (1988).Google Scholar
16. Noge, H., Kano, H., Kato, T., Hashimoto, M., and Igarashi, I., J. Cryst. Growth 83, 431 (1987).Google Scholar
17. Sakamoto, T. and Hashiguchi, G., Jpn. J. Appl. Phys. 25, L78 (1986).Google Scholar
18. Kroemer, H., Polasko, K.J., and Wright, S.C., Appl. Phys. Lett. 36, 763 (1980); H. Kroemer, J. Vac. Sci. Technol. B5, 1150 (1987).CrossRefGoogle Scholar
19. Inoue, N., Tanishiro, Y., and Yagi, K., Jpn. J. Appl. Phys. 26, L293 (1987).Google Scholar
20. Nakayama, T., Tanishiro, Y., and Takayanagi, K., Jpn. J. Appl. Phys. 26, L1186 (1987).Google Scholar
21. Kawanami, H., Hatayama, A., Nagai, K., and Hayashi, Y., Jpn. J. Appl. Phys. 26, L173 (1987).Google Scholar
22. Noge, H., Kano, H., Hashimoto, M., and Igarashi, I., to be published in J. Appl. Phys.Google Scholar
23. Soga, T., Hattori, S., Sakai, S., and Umeno, M., J. Cryst. Growth, 77, 498 (1986).Google Scholar