Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-19T04:38:21.235Z Has data issue: false hasContentIssue false

MBE Growth of Cubic InN

Published online by Cambridge University Press:  01 February 2011

Jörg Schörmann
Affiliation:
University of Paderborn, Department of Physics, Warburger Strasse 100, Paderborn, 33095, Germany, +49 5251 60 5838, +49 5251 60 5843
Donat Josef As
Affiliation:
[email protected], University of Paderborn, Department of Physics, Warburger Strasse 100, Pad erborn, 33095, Germany
Klaus Lischka
Affiliation:
[email protected], University of Paderborn, Department of Physics, Warburger Strasse 100, Paderborn, 33095, Germany
Get access

Abstract

Cubic InN films were grown on top of a c-GaN buffer layer by rf-plasma assisted MBE at different growth temperatures. X-Ray diffraction investigations show that the c-InN layers consist of a nearly phase-pure zinc blende (cubic) structure with a small fraction of the wurtzite (hexagonal) phase grown on the (111) facets of the cubic layer. The content of hexagonal inclusions is decreasing with decreasing growth temperature. The full-width at half-maximum (FWHM) of c-InN (002) rocking curve is about 50 arcmin. Low temperature photoluminescence measurements reveal a band gap of about 0.61eV for cubic InN.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fortz, B.E., O?Leary, S.K., Shur, M.S., and Eastman, L.F., J. Appl. Phys. 85, 7727 (1999)Google Scholar
2. Pugh, S.K., Dugdale, D.J., Brand, S., and Abram, R.A., Semicond. Sci. Technol. 14, 23 (1999)Google Scholar
3. Gallinat, C.S., Koblmüller, G., Brown, J.S., Bernardis, S., and Speck, J.S., Appl. Phys. Lett. 89, 032109 (2006)Google Scholar
4. Fu, S.P., Chen, T.T., and Chen, Y.F., Semicond. Sci. Technol. 21, 244 (2006)Google Scholar
5. As, D.J., in “Optoelectronic Properties of Semiconductor and Superlattices”, series editor M.O., Manasreh, (Taylor & Francis Books, Inc., New York, 2003), Vol.19 chapter 9, pp. 323450 Google Scholar
6. As, D. J., Potthast, S., Schörmann, J., Li, S. F., Lischka, K., Nagasawa, H., and Abe, M., Matrials Science Forum Vols. 527–529, 1489 (2006)Google Scholar
7. Schörmann, J., Potthast, S., As, D.J., and Lischka, K., Appl. Phys. Lett. 89, 131910 (2006)Google Scholar
8. Cimalla, V., Pezoldt, J., Ecke, G., Kosiba, R., Ambacher, O., Spie, L., and Teichert, G., Appl. Phys. Lett., 83, 3468 (2003)Google Scholar
9. Lima, A.P., Tabata, A., Leite, J.R., Kaiser, S., Schikora, D., Schöttker, B., Frey, T., As, D.J., and Lischka, K., J. Cryst. Growth, 201/202, 396398 (1999)Google Scholar
10. Davydov, V. Y., Klochikhin, A. A., Emtsev, V. V., Kurdykov, D. A., Ivanov, S. V., Vekshin, V. A., Bechstedt, F., Furthmüller, J., Aderhold, J., Graul, J., Mudryi, A.V., Harima, H., Hashimoto, A., Yamamoto, A., and Haller, E.E., phys. stat. sol. (b) 234, 787 (2002)Google Scholar