Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-19T07:27:59.321Z Has data issue: false hasContentIssue false

Mbe Growth and Characterization of Lwir HgCdTe

Published online by Cambridge University Press:  21 February 2011

M.B. Lee
Affiliation:
Grumman Corporate Research Center, Bethpage, NY 11714-3580
J. Decarlo
Affiliation:
Grumman Corporate Research Center, Bethpage, NY 11714-3580
D. Dimarzio
Affiliation:
Grumman Corporate Research Center, Bethpage, NY 11714-3580
M. Kesselman
Affiliation:
Grumman Corporate Research Center, Bethpage, NY 11714-3580
Get access

Abstract

We have grown high-mobility LWIR HgCdTe thin films on CdTe substrates, using molecular beam epitaxy (MBE). The structural, optical, and electrical properties of these epilayers were determined by SEM, DCRC, FTIR, and Hall effect measurements. For films of 10 to 11 µm thick and composition X value ranging from 0.152 to 0.172, the highest mobility observed was 7.5 × 105 cm2 /V-sec, and the FWHMs of the rocking curves were 75 to 110 arcsec. We also have carried out the temperature-dependent EXAFS study of HgCdTe.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kurtz, S.R., Dawson, L.R., Bierfeld, R.M., Fritz, I.J., and Zipperian, T.E., Appl. Phys. Lett. 53, 1961 (1988) and references within.Google Scholar
2. Levine, B.F., Bethea, C.G., Hasnain, G., Walker, J., and Malik, R.J., SPIE vol. 930, 114 (1988) and references within.Google Scholar
3. Koestner, R. J. and Schaake, H.F., J. Vac. Sci. Technol. A 6 (4), 2834 (1988).Google Scholar
4. Million, A., DiCioccio, L., Gailliard, J.P., and Piaguet, J., J. Vac. Sci. Technol. A 6 (4), 2813 (1988).Google Scholar
5. Hansen, G.L., Schmit, J. L., and Casselman, T.N., J. Appl. Phys. 53, 7099 (1982).Google Scholar
6. Bhat, Ishwatra B., Fardi, Hamid, and Ghandhi, Sorab K., J. Vac. Sci. Technol. A 6 (4), 2800 (1988).Google Scholar
7. Lange, D., Sivananthan, S., Chu, X., and Faurie, J.P., Appl. Phys. Lett. 52 (12), 978 (1988).Google Scholar
8. Arias, J.M., Shin, S.H. and Gertner, E., J. of Crystal Growth 86, 362 (1988).Google Scholar
9. Koestner, R.J., Liu, H.-Y., and Schaake, H. F., J. Vac. Sci. Technol. A 7 (2), 517 (1989).Google Scholar
10. Sivananthan, S., Lange, M.D., Monfroy, G., and Faurie, J. P., J. Vac. Sci. Technol. B 6 (2), 788 (1988).Google Scholar
11. Myers, T.H., Yanka, R.W., Harris, K. A., Reisinger, A.R., Hans, J., Hwang, S., Yang, Z., Giles, N. C., Cook, J. W. Jr., Schetzina, J. F., Green, R.W., and McDewitt, S., J. Vac. Sci. Technol. A 7 (2), 300 (1989).Google Scholar
12. Bunker, B.A., J. Vac. Sci. Technol. A 5 (5), 3003 (1987).Google Scholar
13. Heald, S.M. and Tranquada, J.M., in Physical Methods of Chemistry, edited by Rossiter, B.W. and Hamilton, I.F. (John Wiley & Sons, N.Y.) Vol. 05, to be published.Google Scholar
14. DiMarzio, D., Lee, M., and DeCarlo, J., in preparation.Google Scholar