Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-23T11:33:09.387Z Has data issue: false hasContentIssue false

Mathematical modeling of aluminum degassing by the impeller injector technique validated by a physical modeling

Published online by Cambridge University Press:  30 July 2014

M. Hernández-Hernández
Affiliation:
Facultad de Química, UNAM, Departamento de Ingeniería Metalúrgica. Edificio “D” Circuito de los Institutos s/n, Cd. Universitaria, C.P. 04510 México D.F., México.
W. F. Cruz-Mendez
Affiliation:
Facultad de Química, UNAM, Departamento de Ingeniería Metalúrgica. Edificio “D” Circuito de los Institutos s/n, Cd. Universitaria, C.P. 04510 México D.F., México.
C. Gonzalez-Rivera
Affiliation:
Facultad de Química, UNAM, Departamento de Ingeniería Metalúrgica. Edificio “D” Circuito de los Institutos s/n, Cd. Universitaria, C.P. 04510 México D.F., México.
M. A. Ramírez-Argáez
Affiliation:
Facultad de Química, UNAM, Departamento de Ingeniería Metalúrgica. Edificio “D” Circuito de los Institutos s/n, Cd. Universitaria, C.P. 04510 México D.F., México.
Get access

Abstract

A mathematical model is developed to describe deoxidation of water in a physical model of a batch aluminum degassing reactor equipped with the rotor-injector technique, assuming that deoxidation kinetics of water is similar to dehydrogenization of liquid aluminum. Degassing kinetics is described by using mass transport and mass balance principles by assuming that degassing kinetics can be characterized by a mass transfer coefficient, which depends on the process variables. The transport coefficient and the average bubble diameter are estimated with correlations reported in the literature for similar gas-injection systems. The water physical model helped to validate the mathematical model and to perform a process analysis by varying: 1) Gas flow rate (20 and 40 l/min); and 2) Impeller’s angular velocity (290 and 573 rpm). Results from the model agree well with measurements of deoxidation kinetics at low impeller rotating speeds. At high rotating speeds the model is still valid but less reliable because it does not take into account the formation of the vortex at the free surface. Nevertheless, the model provides predictions of the influence of every operating parameter and it can be used as a good approximation for real systems.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Johansen, S.T., Graadahl, S., Tetlie, P., Rasch, B., and Myrbostad, E., L. Metals, The Min., Metal and Mat. Soc. (1998).Google Scholar
Zhang, L., Taniguchi, S., Matsumoto, K., Ironmaking & Steelmaking, 29 (2002).Google Scholar
Mi, G. F., et al. ., Materials Science Forum (2008).Google Scholar
Fu, Q. and Evans, J., Met. and Mat. Trans. B, 29 (1998).Google Scholar
Warke, V. S., Shankar, S., and Makhlouf, M.M., J. Mat. Proc. Tech., 168 (2005).Google Scholar
Camacho-Martinez, J. L., Ramírez-Argáez, M. A., Zenit-Camacho, R., Juárez-Hernández, A., Barceinas-Sánchez, O., and Trápaga-Martínez, G., Mat. and Manuf. Proc., 25 (2010).CrossRefGoogle Scholar
Engh, T. A., Principles of Metal Refining, New York: Oxford University Press Inc, 1992.Google Scholar
Botor, J. G., Aluminium, 56 (1980).Google Scholar
Sigworth, G. K. and Engh, T.A., Met. and Mat. Trans. B, 13 (1982).Google Scholar
Sigworth, G. K., Aluminum Trans., 1 (1999).Google Scholar
Lemoine, R. and Morsi, B.I., Chem. Eng. J., 114 (2005).CrossRefGoogle Scholar