Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T16:37:52.891Z Has data issue: false hasContentIssue false

A Mathematical Model of the Gas-Phase and Surface Chemistry in GaAs Mocvd

Published online by Cambridge University Press:  28 February 2011

Michael E. Coltrin
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
Robert J. Kee
Affiliation:
Sandia National Laboratories, Livermore, CA 94550
Get access

Abstract

This paper presents a detailed mathematical model of the coupled gas-phase chem- istry, surface chemistry, and fluid mechanics in the MOCVD of GaAs from trimethylgallium and arsine in a rotating-disk reactor. The model predicts steady-state deposition rates as a function of susceptor temperature and partial pressure of the reactants. Rate constants in the model have been adjusted to match experimental deposition rates from the literature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hess, D. W., Jensen, K. F., and Anderson, T. J., Rev. Chem. Eng., 3, 97 (1985).CrossRefGoogle Scholar
2. Jensen, K. F., Chem. Eng. Sci., 42, 923 (1987).CrossRefGoogle Scholar
3. Coltrin, M. E., Kee, R. J., and Miller, J. A., J. Electrochem. Soc. 131, 425 (1984).CrossRefGoogle Scholar
4. Coltrin, M. E., Kee, R. J., and Miller, J. A., J. Electrochem. Soc. 133, 1206 (1986).CrossRefGoogle Scholar
5. Coltrin, M. E., Kee, R. J., and Evans, G. H., J. Electrochem. Soc., 136, 819 (1989).CrossRefGoogle Scholar
6. Breiland, W. G., Coltrin, M. E., and Ho, P., J. Appl. Phys. 59, 3267 (1986).CrossRefGoogle Scholar
7. Breiland, W. G., Ho, P., and Coltrin, M. E., J. Appl. Phys. 60, 1505 (1986).CrossRefGoogle Scholar
8. Reep, D. H. and Ghandhi, S. K., J. Electrochem. Soc., 130, 675 (1983).CrossRefGoogle Scholar
9. Pollard, R., and Newman, J., J. Electrochem. Soc. 127, 744 (1980).CrossRefGoogle Scholar
10. Tirtowidjojo, M. and Pollard, R., J. Cryst. Growth, 93, 108 (1988).CrossRefGoogle Scholar
11. Creighton, J. R., private communication.Google Scholar
12. Wagner, A. F. and Wardlaw, D. M., J. Phys. Chem., 92, 2462 (1988).CrossRefGoogle Scholar
13. Clark, T. C. and Dove, J. E., Can. J. Chem., 51, 2147 (1973).CrossRefGoogle Scholar
14. Warnatz, J., Combustion Chemistry, (Gardiner, W. C., Ed.), Springer, 1984.Google Scholar
15. Dixon-Lewis, G., Phil. Trans. R. Soc. Lond., A303, 181 (1981).Google Scholar
16. Glarborg, P., Miller, J. A., and Kee, R. J., Combust. and Flame, 65, 177 (1986).CrossRefGoogle Scholar
17. Jacko, M. G. and Price, S. J. W., Can. J. Phys., 41, 1560 (1963).Google Scholar
18. Tirtowidjojo, M. and Pollard, R., J. Cryst. Growth, 77, 200 (1986).CrossRefGoogle Scholar
19. Gilbert, R. G., Luther, K., and Troe, J., Ber. Bunsenges. Phys. Chem., 87, 161 (1983).CrossRefGoogle Scholar
20. Larsen, C. A., Buchan, N. I., and Stringfellow, G. B., Appl. Phys. Lett., 52, 480 (1988).CrossRefGoogle Scholar