Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-14T02:37:23.682Z Has data issue: false hasContentIssue false

Materials For UV and Far Ir Transmission

Published online by Cambridge University Press:  25 February 2011

James W. Fleming*
Affiliation:
AT&T Bell Laboratories Murray Hill, NJ 07479
Get access

Abstract

Motivated by the benefits of optical data transmission, materials for the electromagnetic spectral window from approximately 0.6 to 4.0 microns are being explored by many investigators. I will review materials for the spectral regions surrounding this window. In these spectra regions a primary interest is optical power transmission. Optical power transmission in the UVand far IR has significant application for materials and device fabrication and characterization. Sources such as eximer and CO2 lasers provide potential sources of very high power.

Based on bonding and atomic mass considerations, materials for transmission in these windows can be approximated. Methods for taking advantage of the properties of materials such as reflectivity have the potential for interesting lightguiding structures such as hollow core lightguides. Materials currently contemplated for use in these wavelength regions and properties of potential materials will be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hilton, A. R., Infrared Transmitting Materials, J. Electron. Mater., 2 (2), 211–25, 1973.CrossRefGoogle Scholar
2. Schroeder, H. and Neuroth, N., Optical Materials for the Ultraviolet and Infrared Spectral Regions, Optic, 26 (4), 381401, 1967.Google Scholar
3. Dubois, B., et al., Vitreous Materials for Infrared Optics, J. Opt., 15 (5), 351–6, 1984.CrossRefGoogle Scholar
4. Dianov, E. M., Materials for Infrared Low Loss Fibers, SPIE Advances in JR Fibers, 1982.Google Scholar
5. Arai, T. and Kikuchi, M., Carbon Monoxide Laser Power Delivery with an As2S3 Infrared Glass Fiber, Appl. Opt., 23 (17), 3017–20, 1984.Google Scholar
6. Miyashita, T. and Manabe, T., Infrared Optical Fibers, IEEE J. Quant. Elect., QE-18 (10), 1432–50, 1982.Google Scholar
7. Stanich, C. G., Thermal IR Imaging: A New Geologic Tool, Photonics Spectra, p.93, July, 1986.Google Scholar
8. Phillip, H. R., Optical Transitions in Crystalline and Fused Quartz, Solid State Commun., 4 73–5, 1966.Google Scholar
9. Spitzer, W. G. and Kleinman, D. A., Infrared Lattice Bands of Quartz, Phys. Rev., 121 (5) 1324–35, 1960.Google Scholar
10. Bagley, B. G., et al., The Optical Properties of a Soda-Lime-Silica Glass in the Region From 0.006 to 22 eV, J. Non-Cryst. Sol., 22, 423–36, 1976.Google Scholar
11. Rowe, J. E., Photoemission and Electron Energy Loss Spectroscopy of GeO2 and SiO2 , Appl. Phys. Lett., 25 (10), 1974.Google Scholar
12. Drexhage, M. G., Heavy Metal Fluoride Glasses, Treatise on Materials Science and Technology: ed. Tonozawa, M. and Doremus, R., Academic Press, 1985.Google Scholar
13. Musikant, S., Optical Materials, An Introduction to Selection and Application, Optical Engineering, Vol.6, Marcel Dekker, Inc., New York, 1985 Google Scholar
14. Hirota, S., Izumitani, T. and Onaka, R., Reflection Spectra of Various Kinds of Oxide Glasses and Fluoride Glasses in the Vacuum Ultraviolet Region, J. Non-Cryst. Sol., 72 3950, 1985.Google Scholar
15. Wenzel, J. T. et al., Development of Fluorophosphate Optical Glasses, SPIE 204 Physical Properties of Optical Materials, 1979.Google Scholar
16. Williams, R. T., et al., Vacuum Ultraviolet Properties of Beryllium Fluoride Glass, J. Appl. Phys. 52 (10), 6279–84, 1981.Google Scholar
17. Fleming, J. W., et al., Refractive Index Dispersion Related Characteristics of BeF2 Based Lightguides, Mater. Sci. Forum, 5, 361–70, 1985.Google Scholar
18. Lines, M. E., Scattering Losses in Optic Fiber Materials. II. Numerical Estimates, J. Appl. Phys., 55 (11), 4058–63, 1984.CrossRefGoogle Scholar
19. Rodney, W. S., Malitson, I. H. and King, T. A., Refractive Index of Arsenic Trisulfide, J. Opt. Soc. Amer., 48 (9), 633–6, 1958.Google Scholar
20. Taylor, P. C., Bishop, S. G. and Mitchell, D. L., Far Infrared and Microwave Optical Properties of As2Se3 , Solid State Comm., 8, 1783–7, 1970.Google Scholar
21. Savage, J. A., Optical Properties of Chalcogenide Glasses, J. Non-Cryst. Sol., 47 (1), 101–16, 1982.CrossRefGoogle Scholar
22. Hilton, A. R., Non-Oxide Chalcogenide Infrared Transmitting Glasses, Glass Ind., p. 550, Oct. 1967.Google Scholar
23. Hilton, A. R., Hayes, D. J. and Rechtin, M. D., Infrared Absorption of Some High-Purity Chalcogenide Glasses, J. Non-Cryst Sol., 17, 319338, 1975.Google Scholar
24. Rechtin, M. D., Hilton, A. R. and Hayes, D. J., Infrared Transmission in Ge-Sb-Se Glasses, J. Electron. Mater., 4 (2), 347–62, 1975.CrossRefGoogle Scholar
25. Katsuyama, T., Matsumura, H. and Suganuma, T., European Patent Application #82301088.9, 1982.Google Scholar
26. Vlasov, M. A. et al., Glassy As2Se3 with Optical Absorption of 60 dB/km, Soy. J. Quant. Electron. 12 (7), 932–3, 1982.Google Scholar
27. Lucas, J., Fluoride Glasses with Large Optical Window for IR Fiber, Soc. Photo Opt. Inst. Eng., Advances in IR Fibers, 1982.Google Scholar
28. Jiang, Z. et al., Research on Some IR Transmission Halide Systems, J. Non-Cryst. Sol., 56 (1–3), 6974, 1983.Google Scholar
29. Nasu, H., et al., Preparation and Properties of Non-Fluoride Halide Glasses, Materials Sci. Forum, 5, 121–6, 1985.Google Scholar
30. Belousov, A. P., et al., Thallium Halide Single Crystals with Optical Losses Less than 10 dB/km, Soy. J. Kvantovaya Elektronika, 9, 796, 1982.Google Scholar
31. Artjushenko, V. G., et al., Mechanisms of Optical Losses in Polycrystalline KRS-5 Fibers, J. Lightwave Tech., LT-4 (4), 461–4, 1986.Google Scholar
32. Butvina, L. N. and Dianov, E. M., Optical Absorption by Free Carriers in Materials for IR Fibers, Proc. SPIE, 484, 21, 1984.Google Scholar
33. Matecki, M., Michel Poulain and Marcel Poulain, Cadmium Halide Glasses, J. Non- Cryst. Sol., 56, 8186, 1983.Google Scholar
34. Van Uitert, L. G. and Wemple, S. H., ZnC12Glass: A Potential Ultralow-loss Optical Fiber Material, Appl. Phys. Lett., 33 (1), 57–9, 1978.Google Scholar
35. Hidaka, T., Morikawa, T. and Shimada, J., Hollow-Core Oxide-Glass Cladding Optical Fibers for Middle-Infrared Region, J. Appl. Phys., 52 (7), 4467–71, 1981.Google Scholar
36. Hidaka, T., Loss Calculations of the Hollow-Core, Oxide-Glass-Cladding, Middle- Infrared Optical Waveguides, J. Appl. Phys., 53 (1), 93–7, 1982.Google Scholar
37. Bornstein, A., Croitoru, N. and Seidman, A., Chalcogenide Hollow Fibers for Infrared Energy Transmission, Appl. Phys. Lett., 46 (8), 705–7, 1985.CrossRefGoogle Scholar
38. Scheggi, A. M., Falciai, R. and Gironi, G., Characterization of Oxide Glasses for Hollow- Core Middle IR Fibers, Appl. Opt., 24 (24), 4392–4, 1985.Google Scholar
39. Bornstein, A. and Croitoru, N., Experimental Evaluation of a Hollow Glass Fiber, Appl. Opt., 25 (3), 355–8, 1986.Google Scholar
40. Kanamori, T., et al., Chalcogenide Glass Fibers for Mid-Infrared Transmission, J. Lightwave Tech., LT-2 (5), 607612, 1984.Google Scholar
41. Hattori, T. et al., High-Power CO Laser Transmission Through As-S Glass Fibers, Elect. Lett., 20 (20), 811–12, 1984.Google Scholar
42. Bendow, B. and Gianino, P D., Optical Performance Evaluation of Infrared Transmitting Materials, J. Electron. Mater., 2 (1) 87114, 1973.Google Scholar
43. Bendow, B. and Gianino, P. D., Thermal Lensing of Laser Beams in Optically Transmitting Materials,Appl. Phys., 2, 110, 1973.Google Scholar
44. Boling, N. L., Glass, A. J. and Owyoung, A, Emperical Relationships for Predicting Nonlinear Refractive Index Changes in Optical Solids, IEEE J. Quant Electron., QE-14 (8), 601–8, 1978.Google Scholar