Published online by Cambridge University Press: 10 February 2011
A variety of semiconductor materials have been used to fabricate diode lasers for the midinfrared. Lasers using the lead salts (e.g. PbSnTe) have been commercially available for some time. Mid-infrared emitting III-V semiconductors (e.g. InGaAsSb) have superior thermal conductivity, and diode lasers fabricated from these materials offer higher powers. Of particular interest are the III-V semiconductor lasers based on type-II superlattices (e.g. InAs/GaInSb). Among the many unique properties attributed to type-Il superlattices are small hole mass, reduced Auger recombination, and less inter-valence band absorption - all important for better lasers. Recent results with Quantum Cascade-type lasers are also very encouraging. This paper summarizes the important semiconductor materials for mid-infrared lasers with emphasis on the type-II superlattices.