Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T15:29:13.735Z Has data issue: false hasContentIssue false

Materials for deep blue organic light emitting devices with ultra high thermal stability and charge mobility

Published online by Cambridge University Press:  21 March 2012

Soonnam Kwon
Affiliation:
Department of Materials Chemistry, Korea University, Sejong Campus, Chochiwon, Chungnam, 339-700, South Korea
Kyung R. Wee
Affiliation:
Department of Materials Chemistry, Korea University, Sejong Campus, Chochiwon, Chungnam, 339-700, South Korea
Sang O. Kang
Affiliation:
Department of Materials Chemistry, Korea University, Sejong Campus, Chochiwon, Chungnam, 339-700, South Korea
Get access

Abstract

The development of materials with high stability and high charge mobility is urgent for commercial application of blue phosphorescent organic light emitting devices (PHOLED). Silicon based inorganic-organic hybrid materials with ultra high glass transition temperature (over 150 °C) and high charge mobility (over 1.16 x 10-3 at 5 x 105 V/cm) were synthesized. These showed high external quantum efficiency of over 19%, and deep blue color coordinates of (0.15, 0.23), when they were used as a host materials in the PHOLED.

The origin of the above interesting properties was investigated by experimental measurements complemented by DFT calculations. Estimations of the structure-property relationship of a molecule in an amorphous thin film would be presented

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Han, W.-S., Son, H.-J., Wee, K.-R., Min, K.-T., Kwon, S., Suh, I.-H., Choi, S.-H., Jung, D. H., and Kang, S. O. J. Phys. Chem.C 113, 1968619693 (2009)Google Scholar
2. Avilov, I., Marsal, P., Bredas, J.-L., and Beljonne, D., Adv. Mater. 16, 1624 (2004).Google Scholar
3. Bredas, J.-L., Beljonne, D., Coropceanu, V., and Cornil, J., Chem. Rev. 104, 4971 (2004).Google Scholar
4. Wee, K.-R., Han, W.-S., Son, H.-J., Kwon, S., and Kang, S. O. J. Phys. D: Appl. Phys. 42, 235107 (2009)Google Scholar
5. Kwon, S., Wee, K.-R., Kim, A.-Li, and Kang, S. O. J. Phys. Chem. Lett. 1, 295 (2010).Google Scholar
6. Kwon, S., Wee, K.-R., Kim, A.-Li, Kim, J. W., and Kang, S. O., Appl. Phys. Lett. 97, 023309 (2010).Google Scholar
7. Chopra, N., Swensen, J. S., Polikarpov, E., Cosimbescu, L., So, F., and Padmaperuma, A. B., Appl. Phys Lett. 97, 033304 (2010).Google Scholar
8. Wee, K.-R., Kim, A.-L., Jung, S.-Y., Kwon, S., and Kang, S. O., Submitted Google Scholar
9. Tokito, S., Iijima, T., Suzuri, Y., Tsuzuki, T., and Sato, F., Appl. Phys. Lett. 83, 569 (2003).Google Scholar
10. Sapochak, L. S., Padmaperuma, A. B., Vecchi, P. A., Cai, X., Burrows, P. E., SPIE Proc. 6655, 665506 (2007).Google Scholar
11. Hilberer, A., Wildeman, J., Brouwer, H. J., Garten, F., and Hadziioannou, G. SPIE Proc. 2578, 7480 (1995).Google Scholar
12. Ren, X., Li, J., Holmes, R. J., Djurovich, P. I., Forrest, S. R., and Thompson, M. E., Chem. Mater. 16, 4743 (2004).Google Scholar