Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-28T23:00:57.305Z Has data issue: false hasContentIssue false

Materials for All-Solid-State Lithium Ion Batteries

Published online by Cambridge University Press:  01 February 2013

Sumaletha Narayanan
Affiliation:
University of Calgary, 2500 University Drive, Calgary, Alberta, T2N 1N4, Canada.
Lina Truong
Affiliation:
University of Calgary, 2500 University Drive, Calgary, Alberta, T2N 1N4, Canada.
Venkataraman Thangadurai*
Affiliation:
University of Calgary, 2500 University Drive, Calgary, Alberta, T2N 1N4, Canada.
Get access

Abstract

Garnet-type electrolytes are currently receiving much attention for applications in Li-ion batteries, as they possess high ionic conductivity and chemical stability. Doping the garnet structure has proved to be a good way to improve the Li ion conductivity and stability. The present study includes effects of Y- doping in Li5La3Nb2O12 on Li ion conductivity and stability of “Li5+2xLa3Nb2-xYxO12” (0.05 ≤ x ≤ 0.75) under various environments, as well as chemical stability studies of Li5+xBaxLa3-xM2O12 (M = Nb, Ta) in water. “Li6.5La3Nb1.25Y0.75O12” showed a very high ionic conductivity of 2.7 х 10−4 Scm−1 at 25 °C, which is comparable to the highest value reported for garnet-type compounds, e.g., Li7La3Zr2O12. The selected members show very good stability against high temperatures, water, Li battery cathode Li2CoMn3O8 and carbon. The Li5+xBaxLa3-xNb2O12 garnets have shown to readily undergo an ion-exchange (proton) reaction under water treatment at room temperature; however, the Ta-based garnet appears to exhibit considerably higher stability under the same conditions.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Thangadurai, V. and Weppner, W., Ionics 12, 8192 (2006).CrossRefGoogle Scholar
Robertson, A. D., West, A. R. and Ritchie, A.G., Solid State Ionics 104, 1 (1997).CrossRefGoogle Scholar
Xu, X., Bates, J. B., Jellison, G. E. and Hart, F. X., J. Electrochem. Soc. 144, 524 (1997).Google Scholar
Kawai, H. and Kuwano, J., J. Electrochem. Soc. 141, L78 (1994).CrossRefGoogle Scholar
Stramare, S., Thangadurai, V. and Weppner, W., Chem. Mater. 15, 3974 (2003).CrossRefGoogle Scholar
Thangadurai, V., Kaack, H. and Weppner, W., J. Am. Ceram. Soc. 86, 437 (2003).CrossRefGoogle Scholar
Cussen, E. J., Chem. Commun. 412 (2006).CrossRefGoogle Scholar
Percival, J., Kendrick, E. and Slater, P., Solid State Ionics 179, 1666 (2008).CrossRefGoogle Scholar
Murugan, R., Weppner, W., Schmid-Beurmann, P. and Thangadurai, V., Mater. Sci. Eng. B 143, 14 (2007).CrossRefGoogle Scholar
Cussen, E. J. and Yip, T. W. S., J. Solid State Chem. 180, 1832 (2007).CrossRefGoogle Scholar
O’Callaghan, M. P., Powell, A. S., Titman, J. J., Chen, G. Z. and Cussen, E. J., Chem. Mater. 20, 2360 (2008).CrossRefGoogle Scholar
Thangadurai, V. and Weppner, W., Adv. Funct. Mater. 15, 107 (2005)CrossRefGoogle Scholar
Thangadurai, V. and Weppner, W., Ionics 11, 11 (2005).CrossRefGoogle Scholar
Murugan, R., Thangadurai, V. and Weppner, W., Appl. Phys. A, 91, 615 (2008).CrossRefGoogle Scholar
Narayanan, S., Epp, V., Wilkening, M. and Thangadurai, V., RSC Adv. 2, 2553 (2012).CrossRefGoogle Scholar
Ramzy, A. and Thangadurai, V., Appl. Mater. Interfaces 2, 385 (2010).CrossRefGoogle Scholar
Narayanan, S. and Thangadurai, V., J. Power Sources 196, 8085 (2011).CrossRefGoogle Scholar
Narayanan, S., Ramezanipour, F. and Thangadurai, V., J. Phys. Chem. C 116, 20154 (2012).CrossRefGoogle Scholar
O’Callaghan, M. P. and Cussen, E. J., Solid State Sci. 10, 390 (2008).CrossRefGoogle Scholar
Murugan, R., Thangadurai, V. and Weppner, W., Angew. Chem. Int. Ed. 46, 7778 (2007).CrossRefGoogle Scholar
Awaka, J., Kijima, N., Hayakawa, H. and Akimoto, J., J. Solid State Chem. 182, 2046 (2009).CrossRefGoogle Scholar
Nyman, M., Alam, T. M., McIntyre, S. K., Bleier, G. C. and Ingersoll, D., Chem. Mater. 22, 5401 (2010).CrossRefGoogle Scholar
Galven, C., Fourquet, J., Crosnier-Lopez, M. and Le Berre, F., Chem. Mater., 23, 1892 (2011).CrossRefGoogle Scholar
Truong, L. and Thangadurai, V., Chem. Mater. 23, 3970 (2011).CrossRefGoogle Scholar
Boulant, A., Maury, P., Emery, J., Buzare, J. and Bohnke, O., Chem. Mater. 21, 2209 (2009).CrossRefGoogle Scholar
Boulant, A., Bardeau, J. F., Jouanneaux, A., Emery, J., Buzare, J. and Bohnke, O., Dalton Trans. 39, 3968 (2010).CrossRefGoogle Scholar
Bohnke, O., Pham, Q. N., Boulant, A., Emery, J., Salkus, T. and Barre, M., Solid State Ionics 188, 144 (2011).CrossRefGoogle Scholar
Truong, L. and Thangadurai, V., Inorg. Chem. 51, 1222 (2012).CrossRefGoogle Scholar
Truong, L., Colter, J. and Thangadurai, V., J. Power Sources (to be published).Google Scholar