No CrossRef data available.
Published online by Cambridge University Press: 15 February 2011
Stress levels imparted on a cell have been shown to alter cell organization and function, presumably as a result of morphological cues affecting cytoskeletal organization. Materials with spatially resolved surface chemistry were designed to isolate individual mammalian cells to determine the influence of projected area on cell proliferation and cytoskeletal organization. Surfaces were fabricated using a photolithographic process resulting in islands of cell binding N-(2-aminoethyl)-3-aminopropyl-trimethoxysilane (EDS) separated by a non-adhesive interpenetrating polymer network [poly acrylamide-co-ethylene glycol; P(AAm-co-EG)]. The surfaces contained over 3800 adhesive islands/cm2, allowing for isolation of single cells with projected areas ranging from 100µm2to 10,000µm2. These surfaces provide a useful tool for researching how cell morphology and mechanical forces affect cell function.