Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T02:41:08.723Z Has data issue: false hasContentIssue false

Materials Characterization using THz Ellipsometry

Published online by Cambridge University Press:  31 January 2011

Tino Hofmann
Affiliation:
[email protected], University of Nebraska-Lincoln, Electrical Engineering, Lincoln, Nebraska, United States
Craig M. Herzinger
Affiliation:
[email protected], J.A. Woollam Co., Inc., Lincoln, Nebraska, United States
John A. Woollam
Affiliation:
[email protected], J.A. Woollam Co., Inc., Lincoln, Nebraska, United States
Mathias Schubert
Affiliation:
[email protected], University of Nebraska-Lincoln, Electrical Engineering, Lincoln, Nebraska, United States
Get access

Abstract

We employ spectroscopic ellipsometry in the terahertz (0.2 to 1.5 THz) and the mid-infrared (9 to 50 THz) spectral range for the non-contact, non-destructive optical determination of the free-charge-carrier properties of low-doped Silicon bulk and thin film structures. We find that carrier concentrations as low as 1015 cm−3 in thin films can be unambiguously determined. We envision ellipsometry in the THz spectral range for future non-contact, non-destructive monitoring and control applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Pidgeon, C. in Handbook on Semiconductors, edited by Balkanski, M. (North-Holland, Amsterdam, 1980).Google Scholar
2. Grischkowsky, D. Keiding, S. Exter, M. van, and Fattinger, C. J. Opt. Soc. Am. B 7, 2006 (1990).Google Scholar
3. Herrmann, M. Tani, M. Sakai, K. and Fukasawa, R. J. Appl. Phys. 91, 1247 (2002).Google Scholar
4. Exter, M. van and Grischkowsky, D. Phys. Rev. B 41, 12140 (1990).Google Scholar
5. Katzenellenbogen, N. and Grischkowsky, D. Appl. Phys. Lett. 61, 840 (1992).Google Scholar
6. Fukasawa, R. Sakai, K. and Perkowitz, S. Jpn. J. Appl. Phys. 36, 5543 (1997).Google Scholar
7. Morikawa, O. Tonouchi, M. and Hangyo, M. Appl. Phys. Lett. 75, 3772 (1999).Google Scholar
8. Morikawa, O. Tonouchi, M. and Hangyo, M. App. Phys. Lett. 76, 1519 (2000).Google Scholar
9. Exter, M. van and Grischkowsky, D. Appl. Phys. Lett. 56, 1694 (1990).Google Scholar
10. Fujiwara, H. Spectroscopic Ellipsometry (John Wiley & Sons, New York, 2007).Google Scholar
11. Schubert, M. Infrared Ellipsometry on semiconductor layer structures: Phonons, plasmons and polaritons, vol. 209 of Springer Tracts in Modern Physics (Springer, Berlin, 2004).Google Scholar
12. Tiwald, T. Thompson, A. and Woollam, J. Journal of Vacuum Science & Technology B (Microelectronics and Nanometer Structures) 16, 312 (1998).Google Scholar
13. Ino, Y. Shimano, R. Svirko, Y. and Kuwata-Gonokami, M., Phys. Rev. B 70, 155101 (2004).Google Scholar
14. Hofmann, T. Schade, U. Agarwal, K. Daniel, B. Klingshirn, C. Hetterich, M. Herzinger, C., and Schubert, M. Appl. Phys. Lett. 88, 42105 (2006).Google Scholar
15. Hofmann, T. Schade, U. Eberhardt, W. Herzinger, C. Esquinazi, P. and Schubert, M. Rev. Sci. Inst. 77, 63902 (2006).Google Scholar
16. Nagashima, T. and Hangyo, M. Appl. Phys. Lett. 79, 3917 (2001).Google Scholar
17. Azzam, R. M. and Bashara, N. M. Ellipsometry and Polarized Light (North-Holland Publ. Co., Amsterdam, 1984).Google Scholar
18. Hofmann, T. C.Herzinger, M. T.Tiwald, E. Woollam, J.A. and Schubert, M. (to be published).Google Scholar
19. Schubert, M. Hofmann, T. and Sik, J., Phys. Rev. B 71, 35324 (2005).Google Scholar