Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-29T07:42:06.818Z Has data issue: false hasContentIssue false

Materials Characterization and Device Performance of a CMR-Ferroelectric Heterostructure

Published online by Cambridge University Press:  17 March 2011

S. R. Surthi
Affiliation:
Department of Electrical and Computer Engineering The University of Alabama, Tuscaloosa, AL 35487-0286, U.S.A.
S. Kotru
Affiliation:
Department of Electrical and Computer Engineering The University of Alabama, Tuscaloosa, AL 35487-0286, U.S.A.
R. K. Pandey
Affiliation:
Department of Electrical and Computer Engineering The University of Alabama, Tuscaloosa, AL 35487-0286, U.S.A.
Get access

Abstract

Abstract:The films of colossal magnetoresistive La0.67Ca0.33MnO3 (LCMO) and ferroelectric SbSI were grown by pulsed laser deposition method for fabricating their heterostructures. By varying the processing conditions during film growth and controlling subsequently the annealing conditions, the resistivity transport properties of the LCMO films could be greatly modified. Preliminary tests on the ferroelectric field effect transistor (FeFET) based on LCMO-SbSI heterostructure showed that the device behaves like a nonvolatile memory element. The FeFET showed a maximum channel modulation of ∼10% at room temperature, and the switching voltage was less than 2 V.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Helmolt, R. von, Wecker, J., Holzsapfel, B., Schultz, L. and Samwer, K., Phys. Rev. Lett. 63, 2331 (1993).Google Scholar
2. Jin, S., Tiefel, T. H., McCormack, M., R.A. Fastnatcht, Ramesh, R. and Chen, L.H., Science 264, 413 (1994).Google Scholar
3. Rao, C. N. R. and Raychaudhari, A. K., “Colossal Magnetoresistance, Charge Ordering and Other Novel Properties of Manganates and Related Materials,” in Colossal Magnetoresistance, Charge Ordering and Related Properties of Manganese Oxides, edited by Rao, C. N. R. and Raveau, B., World Scientific Publishing, Singapore (1997).Google Scholar
4. Ogale, S. B., Talyansky, V., Chen, C. H., Ramesh, R., Green, R. L., and Venkatesan, T., Phys. Rev. Lett. 77, 1159 (1996).Google Scholar
5. Looney, D. H., U.S. Patent No. 2791758 (1957); W. L. Brown, U.S. Patent No. 2791759 (1957); I. M. Ross, U.S. Patent No. 2791760 (1957); J. A. Morton, U.S. Patent No. 2791761 (1957).Google Scholar
6. Heyman, P. M. and Heilmeier, G. H., Proc. IEEE 54, 842 (1966).Google Scholar
7. Perlman, S. S. and Ludewig, K. H., IEEE Trans. Electron Devices ED–14, 816 (1967); G. G. Teather and L. Young, Solid State Electron 11, 527 (1968).Google Scholar
8. Wu, S. Y., IEEE Trans. Electron Devices ED–21, 499 (1974); Y. Higuma, Y. Matsui, M. Okuyama, Y. Nakagawa, and Y. Hamakama, Jpn. J. Appl. Phys. Suppl. 17-1, 209 (1978).Google Scholar
9. Mathews, S., Ramesh, R., Venkatesan, T., and Benedetto, J., Science 276, 238 (1997).Google Scholar
10. Watanabe, Y., Appl. Phys. Lett. 66, 1770 (1995); C. H. Ahn, J. -M. Triscone, N. Archibald, M. Decroux, R. H. Hammond, T. H. Geballe, Ø. Fischer, and M. R. Beasley, Science 269, 373 (1995).Google Scholar
11. Ahn, C. H., Hammond, R. H., Geballe, T. H., Beasley, M. R., Triscone, J.-M., Decroux, M., Fischer, ø., Antognazza, L., and Char, K., Appl. Phys. Lett. 70, 206 (1997).Google Scholar
12. Wu, W., Wong, K. H., Mak, C. L., Choy, C. L., and Zhang, Y. H., J. Appl. Phys. 88, 2068 (2000).Google Scholar
13. Fatuzzo, E., Harke, G., Merz, W. J., Nitsche, R., Roetschi, H., and Ruppel, W., Phys. Rev. 127, 2036 (1961); R. Nitsche, and W. J. Merz, J. Phys. Chem. Solids 13, 154 (1960).Google Scholar
14. Kotru, S., Liu, W. and Pandey, R. K., Proceedings of the 12th IEEE International Symposium on Applications of Ferroelectrics, (2001) 231.Google Scholar
15. Surthi, S. R., Ph.D. Dissertation, The University of Alabama (2001).Google Scholar
16. Surthi, S. R., Bhat, S., Pandey, R. K., Rathnayaka, K. D. D., Parasiris, A., DuMar, A. C. and Naugle, D. G., Integrated Thin Films and Applications, Ceramic Transactions (86), 109 (1997).Google Scholar
17. Jonker, G. H. and Santen, J. H. van, Physica 16, 337 (1950); G. H. Jonker, Physica 22, 337 (1956).Google Scholar
18. Xiong, G. C., Li, Q., Ju, H. L., Mao, S. N., Senapati, L., Xi, X. X., Green, R. L., and Venkatesan, T., Appl. Phys. Lett. 66, 1427 (1995).Google Scholar
19. Zhang, W., Boyd, W., Elliot, M., and Herrenden-Harkerand, W., Appl. Phys. Lett. 69, 3929 (1996).Google Scholar
20. Raychaudhari, K., Adv. Phys. 44, 21 (1995).Google Scholar
21. Li, J. F., Viehland, D., Bhalla, A. S., and Cross, L. E., J. Appl. Phys. 71, 2106 (1992).Google Scholar