Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T15:51:36.599Z Has data issue: false hasContentIssue false

Materials Aspects of Germanium Radiation Detector Fabrication

Published online by Cambridge University Press:  15 February 2011

G. Scott Hubbard*
Affiliation:
Canberra Semiconductor, Inc., 24 Digital Drive, Novato, CA 94947
Get access

Abstract

An overview of the present status and future requirements of material for germanium radiation detectors is presented. Fabrication and storage problems for both lithium-drifted, doped germanium and high-purity germanium are compared to demonstrate the reasons for the recent complete dominance of the latter in commercially available radiation detectors. The effect of electrically active point and line defects on the resolution and operating characteristic of high-purity germanium radiation detectors is discussed. Emphasis is placed on deep impurities and dislocations. Present and future applications of high-purity germanium radiation detectors are reviewed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Freck, D.W., J. Wakefield, Nature 4816, 669 (1962).Google Scholar
2. Pell, E.M., J. Appl. Phys. 31, 291 (1960).Google Scholar
3. Hall, R.N., “Semiconductor Materials for Gamma Ray Detectors,” p. 27, Proc. of the meeting June 24, 1966 N.Y. N.Y., eds. Brown (BTL), W.L. and Wagner (BNL), S..Google Scholar
4. Hall, R.N. and Soltys, T.J., IEEE Trans. Nucl. Sci. NS- 18, 160 (1971).CrossRefGoogle Scholar
5. Hansen, W.L., Nucl. Instr. Meth. 94, 377 (1971).CrossRefGoogle Scholar
6. Haller, E.E., IEEE Trans. Nucl. Sci. Vol NS-29, No.3, June 1982.Google Scholar
7. Haller, E.E. and Goulding, F.S., Handbook on Semiconductors, Vol. 4, Ch. 6C, ed. Hilsum, C., North-Holland Publ. Co. (1980).Google Scholar
8. See for example: Pehl, R.H., Cordi, R.C. and Goulding, F.S., IEEE Trans. Nucl. Sci. NS-19, No. 1, 265 (Feb., 1972).Google Scholar
9. Hansen, W.L. and Haller, E.E., IEEE Trans. Nucl. Sci., Vol. NS-28, No. 1, 541 (1981).CrossRefGoogle Scholar
10. Hubbard, G.S., Haller, E.E. and Hansen, W.L., IEEE Trans. on Nucl. Sci., NS–24, No. 1, 161 (February 1977).CrossRefGoogle Scholar
11. Ponpon, J.P., Grob, J.J., Stuck, R., Burger, P. and Siffert, P., Proc. of the II Int. Conf. on Ion Implantation - Semiconductors, Springer-Verlag, New York (1971)Google Scholar
12. For a complete survey see: Handbook of Thin Film Technology, ed. Maissel, L.I, Glang, R., McGraw-Hill (1970).Google Scholar
13. Baertsch, R.D., IEEE Trans. NS- 21, 347 (1974).Google Scholar
14. Dinger, R.J., J. Electrochem. Soc. 123, 1398 (1976) andGoogle Scholar
14a Dinger, R.J., IEEE Trans. NS- 22, 135 (1975).Google Scholar
15. Hansen, W.L., Haller, E.E. and Hubbard, G.S., IEEE Trans. Nucl. Sci. NS-27, 247 (1980).Google Scholar
16. Fano, U., Phys. Rev. 70, 44, (1946).Google Scholar
17. Lawrence Berkeley Laboratory, Univ. of California, Berkeley, CA, USA. General Electric Company, King of Prussia Pennsylvania, USA. Metallurgie Hoboken-Overpelt, Division of Chemical Products, Olen, Belgium. EG&G, Oak Ridge, Tennessee, USA. Canberra Semiconductor, Novato, California, USA.Google Scholar
18. Haller, E.E., Li, P.P., Hubbard, G.S. and Hansen, W.L., IEEE Trans. Nucl. Sci. NS-26, 265, (1979).CrossRefGoogle Scholar
19. Evwaraye, A.O., Hall, R.N. and Soltys, T.J., IEEE Trans. Nucl. Sci., NS-26, 271 (1979).CrossRefGoogle Scholar
20. Schoenmaekers, W.K.H., Clauws, P., Van den Steen, K., Broeckx, J. and Henck, R., IEEE Trans. Nucl. Sci., NS-26, 256 (1979).Google Scholar
21. Miller, G.L., Lang, D.V. and Kimerling, L.C., Ann. Rev. Mat. Sci., 7, 377 (1977).Google Scholar
22. Lang, D.V., J. Appl. Phys. 45, 3022 (1974).Google Scholar
23. Simoen, E., Clauws, P., Broeckx, J., Vennik, J., Van Sande, M. and DeLaet, L., IEEE Trans. Nucl. Sci., NS- 29, No. 1, 789 (1982).Google Scholar
24. Haller, E.E., Hubbard, G.S., Hansen, W.L. and Seeger, A., Inst. Phys. Conf. Ser. 31, 309, (1977).Google Scholar
25. Hubbard, G.S. and Haller, E.E., J. Electr. Mat. 9, 51 (1980).CrossRefGoogle Scholar
26. Pehl, R.H., Physics Today, 30, No. 11, pp 5061 (November 1977).Google Scholar
27. Glasow, P.A., IEEE Trans. Nucl. Sci., NS- 29, No. 3, 1159 (1982).Google Scholar
28. Hubbard, G.S. and Haller, E.E., Nuclear Inst. and Methods, 164, 121 (1979).CrossRefGoogle Scholar
29. Simon, R.S., Journal De Physique, 41, C10281 (1980).Google Scholar
30. Kraner, H.W., Pehl, R.H. and Haller, E.E., IEEE Trans. on Nucl. Sci., NS–22, No. 1, pp 149154 (February 1975).Google Scholar
31. Pehl, R.H., Madden, N.W., Elliott, J.H., Raudorf, T.W., Trammel, R.C. and Darken, L.S. Jr., IEEE Trans. Nuc. Sci. NS–26, 321 (1979).CrossRefGoogle Scholar
32. Patton, J., Price, R.R., Rollo, F.D., Brill, A.B., Pehl, R.H., IEEE Trans. Nucl. Sci. NS25, No. 1 (1978).Google Scholar
33. Schnerr, G.J., Goldman, L.H. and Ryge, P., IEEE Trans. Nucl. Sci., NS-27, No. 1, 240 (1980).Google Scholar
34. Witherell, M.S., AIP Proceedings, Workshop on Science Underground, to be published.Google Scholar