Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T02:15:05.441Z Has data issue: false hasContentIssue false

Materials And Fabrication Processes For Highly Accurate X-Ray Masks

Published online by Cambridge University Press:  15 February 2011

Masatoshi Oda
Affiliation:
NTT Advanced Technology Corporation, 3-1, Morinosato Wakamiya, Atsugi-shi, Kanagawa, 243-01 JAPAN.
Hideo Yoshihara
Affiliation:
NTT Advanced Technology Corporation, 3-1, Morinosato Wakamiya, Atsugi-shi, Kanagawa, 243-01 JAPAN.
Get access

Abstract

This paper discusses the properties of materials for x-ray masks used in synchrotron radiation lithography system. Through computer simulations and experimental analysis, we evaluate three kinds of membranes (Si, SiN, SiC) in terms of mechanical distortions, surface smoothness and optical transmittance. SiC exhibits the smallest distortion, but SiN has the best characteristics in the surface smoothness and the optical transmittance. By virtue of their high x-ray absorption coefficient and dry etching capabilities, Ta, W and Re are selected as potential absorber materials. We study their stress control characteristics, etching characteristics and the relation between their Young's modulus and distortions. We find that Ta is an excellent absorber because of its good stress controllability and good etching characteristics, such as a high etch rate and etch selectivity. By adopting a Ta/SiN structure, highly accurate masks can be fabricated by a process in which patterning the absorber is carried out before removing the bulk Si.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Cerrina, F., Jpn. J. Appl. Phys. 31, 4178 (1992).Google Scholar
[2] Deguchi, K., Miyoshi, K., Ban, H., Kyuragi, H., Konaka, S. and Matsuda, T., J. Vac. Scd. Technol. B10, 3145 (1992).Google Scholar
[3] Kyuragi, H., Konaka, S., Kobayashi, T., Deguchi, K., Yamamoto, E., Ohki, S. and Yamamoto, Y., 1992 Symposium on VLSI Technology Digest of Technical Papers(1992), p. 26.Google Scholar
[4] Betz, H., Huber, H. -L., Pongratz, S., Rohrmoser, W. and Windbracke, W., Microelectronic Engineering 5, 41 (1986).Google Scholar
[5] Sekimoto, M., Yoshihara, H. and Ohkubo, T., J. Vac. Sci. Technol. 21, 1017 (1982).Google Scholar
[6] Yamashiro, K., Sugawara, M., Nagasawa, H. and Yamaguchi, Y., Jpn. J. Appl. Phys. 30, 3078 (1991).CrossRefGoogle Scholar
[7] Windischmann, H. and Epps, G. F., J. Appl. Phys. 68, 5665 (1990).CrossRefGoogle Scholar
[8] Oda, M., Ohki, S., Ozawa, A., Ohkubo, T. and Yoshihara, H., Jpn. J. Appl. Phys. 31, 4189 (1992).Google Scholar
[9] Oda, M., Ohkubo, T., Ozawa, A., OhkI, S., Kakuchi, M. and Yoshihara, H., Microelectronic Engineering 11, 241 (1990).CrossRefGoogle Scholar
[10] Dana, S. S., Batey, J., Maldonado, J. R., Vladimirsky, O., Fair, R. and Viswanathan, R., Microelectronic Engineering 6, 233 (1987).CrossRefGoogle Scholar
[11] Ohki, S., Kakuchl, M., Matsuda, T., Ozawa, A., Ohkubo, T., Oda, M. and Yoshihara, H., Jpn. J. Appl. Phys. 28, 2074 (1989).CrossRefGoogle Scholar
[12] Yamada, M., Kondo, K., Nakaishi, M., Kudo, J. and Sugishima, K., J. Electrochem. Soc. 137, 2231 (1990).Google Scholar
[13] Oda, M., Ozawa, A., Ohki, S. and Yoshihara, H., Jpn. J. Appl. Phys. 29, 2616 (1990).Google Scholar
[14] Oda, M., Ozawa, A. and Yoshihara, H., J. Vac. Sci. Technol. B11, 37 (1993)CrossRefGoogle Scholar
[15] Sato, M., Kato, S. and Arita, Y., Jpn. J. Appl. Phys. 30, 7 (1991).Google Scholar
[16] Lüthje, H., Harms, M., Matthlessen, B. and Bruns, A., Jpn. J. Appl. Phys. 28, 2342 (1989).Google Scholar
[17] Yoshihara, H., Microelectronic Engineering 17, 123 (1992).CrossRefGoogle Scholar