No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
Flexible and stretchable electronic components are currently at the heart of macroelectronics research. Materials useful for such applications are based on entropy elastic soft matter, combined with energy elastic functional elements. Examples include functional materials for sensing pressure and temperature changes, such as ferroelectrets, ferroelectric polymers, and nanocomposites of ferroelectric polymers and piezoelectric ceramics. Components for making flexible or stretchable electronic components additionally require electronic circuitry based on amorphous silicon or on organic semiconductors. Progress in such electronic elements is rapid, state of the art are elements which can easily operate at low voltage levels of 1 V. Combined with functional materials, sensing elements for temperature and pressure changes are easily achieved, as demonstrated with a few working examples of paper thin microphones, optothermal switching elements and skin-like electronics. Entropy-elastic elastomers form the basis for actuating elements, outlined by examples based on self organized actuating structures. Such materials can be also made functional by design, enabling fully reversible stretchable sensing elements for temperature, pressure and other physical parameters.