Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T02:38:38.584Z Has data issue: false hasContentIssue false

Material Basis of Highly Stable a-Si:H Solar Cells

Published online by Cambridge University Press:  10 February 2011

B. Rech
Affiliation:
Forschungszentrum Jülich, Institut für Schicht- und lonentechnik, D-52425 Jftilich, Germany
S. Wieder
Affiliation:
Forschungszentrum Jülich, Institut für Schicht- und lonentechnik, D-52425 Jftilich, Germany
F. Siebke
Affiliation:
Forschungszentrum Jülich, Institut für Schicht- und lonentechnik, D-52425 Jftilich, Germany
C. Beneking
Affiliation:
Forschungszentrum Jülich, Institut für Schicht- und lonentechnik, D-52425 Jftilich, Germany
H. Wagner
Affiliation:
Forschungszentrum Jülich, Institut für Schicht- und lonentechnik, D-52425 Jftilich, Germany
Get access

Abstract

We achieved a stabilized efficiency of 9.2 % after only 8 % relative degradation for an a-Si:H/a-Si:H stacked cell with the top-cell i-layer prepared at 140 °C using a high hydrogen dilution of the silane process gas. From a comprehensive characterization of p-i-n cells and the corresponding i-layer material prepared at 140 °C and 190 °C substrate temperature with different hydrogen dilutions, we conclude that the performance of these pin cells strongly correlates with the material properties of the corresponding i-layers. High fill factors after light soaking are reflected in a good microstructure, high photo-conductivity, and relatively low defect density. Whereas the initial Voc is limited by interface recombination, volume recombination dominates the forward-dark current after light soaking. The stabilized Voc as well as the short-circuit current densities correlate with the optical bandgap of the i-layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Yang, J., Xu, X., and Guha, S., Mat. Res. Soc. Proc. Vol.336, 687 (1994).Google Scholar
2. Yang, L. and Chen, L.-F., Mat. Res. Soc. Proc. Vol.336, 669 (1994).Google Scholar
3. Deng, X., Narasimhan, K. L., Evans, J., Izu, M., and Ovshinsky, S. R., in: Proc. 1st World Conference on Photovoltaic Energy Conversion, IEEE, New York 1994, (p. 678).Google Scholar
4. Siamchai, P. and Konagai, M., Appl. Phys. Lett 67, 3468 (1995).Google Scholar
5. Wieder, S., Rech, B., Beneking, C., Siebke, F., Reetz, W., and Wagner, H., in: Proc. of the 13th Europ. Photovoltaic Solar Energy Conf., Nice 1995, (p. 234).Google Scholar
6. Rech, B., Beneking, C., Wieder, S., Eickhoff, Th., and Wagner, H., in: Proc. of the 13th Europ. Photovoltaic Solar Energy Conf., Nice 1995, (p. 613).Google Scholar
7. Wagner, H. and Beyer, W., Solid State Communication 48, 585 (1983).Google Scholar
8. Pierz, K., Hilgenberg, B., Mell, H., and Weisser, G., J. Non-Cryst. Sol. 97&98, 63 (1987).Google Scholar
9. Siebke, F. and Stiebig, H., Mat. Res. Soc. Proc. Vol.336, 371 (1994).Google Scholar
10. Beyer, W. and Mell, H., J. Non-Cryst. Sol., in printGoogle Scholar
11. Sakai, H., Yoshida, T., Fujikake, S., Hama, T., Ichikawa, Y., J. Appl. Phys. 67, 3494 (1990).Google Scholar