Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T01:10:29.405Z Has data issue: false hasContentIssue false

Mask-Edge Distributions Produced by 80 KeV As+ Ion Implantation Into Si

Published online by Cambridge University Press:  15 February 2011

D. Danailov
Affiliation:
Institute of Electronics, Bulgarian Academy of Sciences, 72 blvd. Tzarigradsko Chaussee, BG-1784 Sofia, Bulgaria
D. Karpuzov
Affiliation:
Institute of Electronics, Bulgarian Academy of Sciences, 72 blvd. Tzarigradsko Chaussee, BG-1784 Sofia, Bulgaria
A. Almazouzi
Affiliation:
EPF Lausanne, Centre de Recherches en Physique des Plasmas, Association EURATOM, Technologie de la Fusion, CH-5232 Villigen PSI, Switzerland
P.De Almeida
Affiliation:
EPF Lausanne, Centre de Recherches en Physique des Plasmas, Association EURATOM, Technologie de la Fusion, CH-5232 Villigen PSI, Switzerland
M. Victoria
Affiliation:
EPF Lausanne, Centre de Recherches en Physique des Plasmas, Association EURATOM, Technologie de la Fusion, CH-5232 Villigen PSI, Switzerland
Get access

Abstract

The 2D-dopant and defect distributions resulting from 80 keV ion implantation of As+ ions into Si through a high-edge mask are presented. The distributions are obtained by means of an efficient computer procedure using the results of Monte Carlo simulation. Two versions of the computer code TRIM are used. The 2D-target atom redistribution is obtained as a result of cascade collisions. The simulation reveals the effect of near-mask-edge target atom depletion. This effect is related to the recoil phenomena and can be explained on the basis of simple model.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Furukawa, S., Matsumura, H., Ishiwara, H., J. Appl. Phys., 11, 134 (1972).Google Scholar
2. Runge, H., Phys. Status Solidi (a), 39, 595 (1977).Google Scholar
3. Ryssel, H., Hoffman, K., in Process and Device Simulation for MOS-VLSI Circuits, edited by Antognetti, P. et al., Boston, 1983.Google Scholar
4. Giles, M. D., Gibbons, J. F., J. Electr. Soc.: Solid-State Science and Technology, 10, 2476 (1985).Google Scholar
5. Albers, J., IEEE Trans. on CAD, 4(4), 374 (1985).Google Scholar
6. Ryssel, H., Lorenz, J., KrUger, W., Nucl. Instrum. Meth. B19/20, 45 (1987).Google Scholar
7. Vieu, C., Claverie, A., Faure, J. and Beauvillain, J., Nucl. Instrum. Meth. Phys. Res. B36, 137 (1987).Google Scholar
8. Posselt, M., Nucl. Instrum. Meth. Phys. Res. B96, 163 (1995).Google Scholar
9. Hobler, G., Nucl. Instrum. Meth. Phys. Res. B96, 155 (1995).Google Scholar
10. Danailov, D. M., Comp. Rend. I'Acad. Bulg. Sci., 41(3), 33 (1988); Bulg. J. Phys, 16(3), 310 (1989).Google Scholar
11. Klein, K., Park, C., and Tasch, A., IEEE Trans. 7, 39 (1992)Google Scholar
12. Morris, S., Lim, D., Yang, S-H., Tian, S., Parab, K., and Tasch, A. F., Mat. Res. Soc. Symp. Proc. 396, 27 (1996)Google Scholar
13. Ziegler, J. F., Biersack, J. P., Littmark, U., Stopping Power and Ranges of Ions in Matter, Pergamon, N.Y., 1985.Google Scholar
14. Biersack, J. P. and Eckstein, W., Appl. Phys. A34, 7394 (1984).Google Scholar
15. Posselt, M., Biersack, J. P., Nucl. Instrum. Meth. B15, 20 (1986).Google Scholar
16. Kakoschke, R., Binder, H., Röhl, S., Masseli, K., Rangelow, I. W., Saler, S. and Kassing, R., Nucl. Instr. Meth. B21, 142 (1987).Google Scholar