Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T17:35:17.638Z Has data issue: false hasContentIssue false

Martensitic transformations in ion implanted stainless steels

Published online by Cambridge University Press:  25 February 2011

Erik Johnson*
Affiliation:
Physics Laboratory, H.C. Ørsted Institute, Universitetsparken 5, DK–2100 Copenhagen Ø, Denmark
Get access

Abstract

Using ion implantation it is possible to induce a variety of phase transformations in the surfaces of stainless steels. The implanted layer can be either amorphized, undergo an fee (γ) => bec (α') martensitic transformation, or compounds can be formed between implanted atoms and target atoms. Stress provides a dominant contribution to the driving forces for amorphization and martensitic transformations. Implantation-induced alloying is important for obtaining the right composition in the implanted layer, whereby the transformation conditions can be optimized. Amorphization is best achieved by implantation of metalloids or other conventionally known glass forming elements. Martensitic transformations in austenitic steels are most easily induced after implantations with noble gases — including helium, where highly pressurized noble gas inclusions are formed. Implantations at high fluences with compound forming species such as nitrogen, boron or phosphorus, will often produce an implanted layer with a structure resembling a ceramic glazing which, depending on the implant species, will be amorphous or crystalline.

In order to understand and predict changes in the surface properties of implanted stainless steels, a detailed knowledge of the implantation induced microstructures is essential. The implanted surface will often have a multiphase structure giving only moderate improvements in corrosion properties, and in particular, resistance to pitting corrosion will often be reduced or only slightly improved. Surface hardness will, on the other hand, in many cases be increased, and large improvements will often be observed in wear and friction properties of the implanted surfaces. Under conditions where formation of a homogeneous surface layer is facilitated, the fatique life of implanted samples may also be extended.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Johnson, E., in Ion implantation 1988, edited by Wöhlbier, F.H. (Defect and Diffusion Forum, Vols. 57–58, Trans Tech Publications, Switzerland 1988) pp. 241262.Google Scholar
2 Singer, I.L., Applications of Surf. Sci. 18, 28 (1984)Google Scholar
3 Fayeulle, S., in Ion implantation 1988, edited by Wöhlbier, F.H. (Defect and Diffusion Forum, Vols. 57–58, Trans Tech Publications, Switzerland 1988) pp. 327358.Google Scholar
4 Follstaedt, D.M., Nucl. Instrum. Meth. B7/8, 11 (1985).Google Scholar
5 Marest, G., in Ion implantation 1988, edited by Wöhlbier, F.H. (Defect and Diffusion Forum, Vols. 57–58, Trans Tech Publications, Switzerland 1988) pp. 273325.Google Scholar
6 Peckner, D. and Bernstein, I.M. (editors), Handbook of stainless steels, (McGraw-Hill, New York, 1977).Google Scholar
7 Pickering, F.B., Physical metallurgy and the design of steels, (Applied Science Publishers, London, 1978).Google Scholar
8 Nishiyama, Z., Martensitic transformations, (Academic Press, New York, 1978).Google Scholar
9 Grant, W.A., J. Vac. Sci. Technol. 15, 1644 (1978).Google Scholar
10 Grant, W.A., Whitton, J.L. and Williams, J.S., Radiat. Effects 49, 65 (1980).Google Scholar
11 Johnson, E., Wohlenberg, T., Grant, W.A., Hansen, P. and Chadderton, L.T., J. Microscopy 116, 77 (1979).Google Scholar
12 Cooney, E.C., Lee, N.L., Fisher, G.B. and Potter, D.I., Mater. Sci. Eng. A116, 27 (1989).Google Scholar
13 Linker, G., Solid State Comm. 57, 773 (1986).Google Scholar
14 Linker, G., Nucl. Instrum. Meth. B19/20, 526 (1987).Google Scholar
15 Seidel, A., Massing, S., Strehlau, B. and Linker, G., Mater. Sci. Eng. A115, 139 (1989).Google Scholar
16 Elvidge, C.J., Wood, J.V., Johnson, E., Johansen, A. and Sarholt-Kristensen, L., Nucl. Instrum. Meth. B19/20, 190 (1987).Google Scholar
17 Elvidge, C., Graabask, L., Johnson, E., Wood, J.V., Johansen, A. and Sarholt-Kristensen, L., in Processing of Structural Metals by Rapid Solidification, Orlando Fl. 1986, (Asm International, Metals Park, Oh, 1987)Google Scholar
18 Cohen, C., Benyagoub, A., Bernas, H., Chaumont, J., Thome, L., Berti, M. and Drigo, A.V., Phys. Rev. B, 31, 5 (1985).Google Scholar
19 Pope, L.E., Yost, F.G., Follstaedt, D.M., Picraux, S.T. and Knapp, J.A., Mat. Res. Soc. Symp. Proc. edited by Hubler, G.K., Holland, O.W., Clayton, C.R. and White, C.W., (Elsevier Science Publishing Co. Amsterdam, Vol. 27, 1984) pp. 661666.Google Scholar
20 Singer, I.L. and Jeffries, R.A., Mat. Res. Soc. Symp. Proc. edited by Hubler, G.K., Holland, O.W., Clayton, C.R. and White, C.W., (Elsevier Science Publishing Co. Amsterdam, Vol. 27, 1984) pp. 667672.Google Scholar
21 Follstaedt, D.M., Yost, F.G. and Pope, L.E., Mat. Res. Soc. Symp. Proc. edited by Hubler, G.K., Holland, O.W., Clayton, C.R. and White, C.W., (Elsevier Science Publishing Co. Amsterdam, Vol. 27, 1984) pp. 655660.Google Scholar
22 Pope, L.E., Follstaedt, D.M., Knapp, J.A. and Barbour, J.C., Mat. Res. Soc. Symp. Proc. edited by Aziz, M.J., Rehn, L.E. and Stritzker, B., (Materials Research Society, Pittsburgh PA, Vol. 100, 1988) pp. 175180.Google Scholar
23 Follstaedt, D.M., Knapp, J.A. and Pope, L.E., Nucl. Instrum. Meth. B42, 205 (1989).Google Scholar
24 Karimi, A., Acta. Metall. 37, 1079 (1989).Google Scholar
25 Lee, E.H. and Mansur, L.K., J. Mater. Res. 4, 1371 (1989).Google Scholar
26 Nair, M.R., Venkatraman, S., Kothari, D.C., Lai, K.B. and Raman, R., Nucl. Instrum. Meth. B34, 53 (1988).Google Scholar
27 Kothari, D.C., Guzman, L., Voltolini, E., Dapor, M., Tomasi, A., Gialanella, S. and Scardi, P., Mater. Sci. Eng. A116, 89 (1989).Google Scholar
28 Hicks, P.D. and Robinson, F.P.A., Corr. Science, 24, 885 (1984).Google Scholar
29 Johnson, E., Wohlenberg, T. and Grant, W.A., Phase Transitions, 1, 23 (1979).Google Scholar
30 Johnson, E., Sarholt-Kristensen, L. and Johansen, A., Nucl. Instrum. Meth. 209/210, 363 (1983).Google Scholar
31 Johnson, E., Littmark, U., Johansen, A., Christodoulides, C., Philos. Mag. A, 45, 803 (1982).Google Scholar
32 Johnson, E., Johansen, A., Sarholt-Kristensen, L., Roy-Poulsen, H. and Christiansen, A., Nucl. Instrum. Meth. B7/8, 212 (1985).Google Scholar
33 Hayashi, N., Johnson, E., Johansen, A., Sarholt-Kristensen, L. and Sakamoto, I., Proc. Int. Conf. On Martensitic Transformations, edited by Tamura, I., (The Japan Institute of Metals, Sendai, Japan, 1986), pp. 539544.Google Scholar
34 Johnson, E., Johansen, A., Sarholt-Kristensen, L., Grabaek, L., Hayashi, N. and Sakamoto, I., Nucl. Instrum. Meth. B19/20, 171 (1987).Google Scholar
35 A. Johansen, E. Johnson, L. Sarholt-Kristensen, Steenstrup, S., Gerritsen, E., Denissen, C.J.M., Keetels, H., Politiek, J., Hayashi, N. and Sakamoto, I., Nucl. Instrum. Meth. B, in press, (1990).Google Scholar
36 Johnson, E., Gerritsen, E., Chechenin, N.G., Johansen, A., Sarholt-Kristensen, L., Keetels, H.A.A., Gråbaek, L. and Bohr, J., Nucl. Instrum. Meth. B39, 573 (1989),Google Scholar
37 Roy-Poulsen, H., Johnson, E., Johansen, A., Sarholt-Kristensen, L. and Hayashi, N., Hyperfine Int. 29, 1201 (1986).Google Scholar
38 Johnson, E., Grabaek, L., Johansen, A., Sarholt-Kristensen, L., Børgesen, P., Scherzer, B.M.U., Nayashi, N. and Sakamoto, I., Nucl. Instrum. Meth. B39, 567 (1989).Google Scholar
39 Noordhuis, J. and de Hosson, J.T.M., Scripta Metall. to be published, (1990).Google Scholar
40 Templier, C., Garem, H. and Riviere, J.P., Philos. Mag. A, 53, 667 (1986)Google Scholar
41 Andersen, H.H., Bohr, J., Johansen, A., Johnson, E., Sarholt-Kristensen, L. and Surganov, V., Phys. Rev. Lett. 59, 1589 (1987).Google Scholar
42 Sakamoto, I., Hayashi, N., Furubayashi, N. and Tanoue, H., Hyperfine Int. 42, 1005 (1988).Google Scholar
43 Vardiman, R.G., Bolster, R.N. and Singer, I.L., in Metastable materials formation by ion implantation edited by Picraux, S.T. and Choyke, W.J. (Elsevier Sci. Publ., New York, 1982) pp. 269274.Google Scholar
44 Vardiman, R.G. and Singer, I.I., Mat. Lett. 2, 150 (1983).Google Scholar
45 Singer, I.L., Vardiman, R.G., and Bolster, R.N., J. Mater. Res. 3, 1134 (1988).Google Scholar
46 Hayashi, N. and Takahashi, T., Appl. Phys. Lett. 41, 1100 (1982).Google Scholar
47 Hayashi, N., Sakamoto, I., Takahashi, T. and Kuriyama, K., Proc. Int. Engineering Congress ISIAT & IPAT '83, edited by Takagi, T., (Inst. Eleectrical Engineers, Tokyo, 1983), pp. 19191924.Google Scholar
48 Hayashi, N., Sakamoto, I. and Takahashi, T., J. Nucl. Mater. 128/129, 756 (1984).Google Scholar
49 Hayashi, N., Sakamoto, I., Johnson, E., Graabaek, L., Børgesen, P. and Scherzer, B.M.U., Hyperfine Int. 42, 989 (1988).Google Scholar
50 Jäger, W. and Roth, J., Nucl. Instrum. Meth. 182/183, 975 (1981).Google Scholar
51 Donelly, S.A., Radiat. Effects, 90, 1 (1985).Google Scholar
52 Altstetter, C.J., Behrisch, R., Bøttiger, J., Pohl, F. and Scherzer, B.M.U., Nucl. Instrum. Meth. 149, 59 (1978).Google Scholar
53 Scherzer, B.M.U., Børgesen, P. and Möller, W., Nucl. Instrum. Meth. B15, 375 (1986).Google Scholar
54 Rozenak, P. and Eliezer, D., Acta Metall. 35, 2329 (1987).Google Scholar
55 Laursen, T., Whitton, J.L. and Dearnaley, G., Mater. Sci. Eng. A116, 97 (1989).Google Scholar
56 Sakamoto, I., to be published, (1989).Google Scholar
57 Leutenecker, R., Wagner, G., Louis, T., Gonser, U., Guzman, L. and Molinari, A., Mater Sci. Eng. A115, 229 (1989).Google Scholar
58 Whitton, J.L., Ewan, G.T., Ferguson, M.M., Laursen, T., Mitchell, I.V., Plattner, H.H., Swanson, M.L., Drigo, A.V., Celotti, G. and Grant, W.A., Mater. Sci. Eng. 69, 111 (1985).Google Scholar
59 Fayeulle, S., Treheux, D. and Esnouf, C., Appl. Surf. Sci. 25, 288 (1986).Google Scholar
60 Fayeulle, S. and Treheux, D., Nucl. Instrum. Meth. B19/20, 217 (1987).Google Scholar
61 Cavalleri, A., Guzman, L., Ossi, P.M. and Rossi, I., Scripta Metall. 20, 37 (1986).Google Scholar
62 Kustas, F.M., Misra, M.S. and Williamson, D.L., Nucl. Instrum. Meth. B31, 393 (1988).Google Scholar
63 Huang, P. and Hochman, R.F., Mater. Sci. Eng. A115, 257 (1989).Google Scholar
64 Baron, M., Chang, A.L., Schreurs, J. and Kossowsky, R., Nucl. Instrum. Meth. 182/183, 531 (1981).Google Scholar
65 Edenhofer, B., Härtereitechnische Mitteilungen, 30, 21 and 214 (1975).Google Scholar
66 Yasumaru, N. and Kamachi, K., Proc. Int. Conf. On Martensitic Transformations, edited by Tamura, I., (The Japan Institute of Metals, Sendai, Japan, 1986), pp. 533538.Google Scholar
67 Butler, E.P. and Burke, M.G., Acta Metall. 34, 557 (1986).Google Scholar
68 Shrivastava, S., Tarey, R.D., Jain, A. and Chopra, K.L., Mater. Sci. Eng. A115, 253 (1989).Google Scholar
69 Welsch, G., Wang, J.J., Bakhru, H., Mashayekhi, A., Gibson, W. and MacCrone, R.K., Thin Solid Films, 107, 305 (1983).Google Scholar