Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-14T02:35:44.022Z Has data issue: false hasContentIssue false

Marker Experiments for the moving Species in Silicides During Solid Phase Epitaxy of Evaporated Si

Published online by Cambridge University Press:  22 February 2011

Chuen-Der Lien
Affiliation:
California Institute of Technology, Pasadena, CA. 91125
Meir Bartur
Affiliation:
California Institute of Technology, Pasadena, CA. 91125
Marc-A. Nicolet
Affiliation:
California Institute of Technology, Pasadena, CA. 91125
Get access

Abstract

Evaporated W, implanted Xe, and implanted 18O were used as markers to study the dominant moving species during (a) solid phase epitaxy (SPE) of evaporated Si, (b) silicide formation, and (c) oxidation of silicides on Si substrate.

MeV 4He+ backscattering spectrometry and 18O (p, α)15 N nuclear reaction were used to monitor the evolution of elemental profiles as well as the change in the marker position. In most cases, the dominant moving species in SPE is the same as that observed in the formation and oxidation of that silicide. However, in CrSi2 the dominant moving species is Si during silicide formation, but Cr during SPE or oxidation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. By “moving species”, we mean the species that moves with respect to and inert marker [4].Google Scholar
2. Nicolet, M-A. and Lau, S. S. in: VLSI Electronics: Microstructure Science, Einspruch, N. G., ed. Vol. 6, Einspruch, N. G. and Larrabee, G. B., eds. (Academic Press, New York, 1983), Chap. 6.Google Scholar
3. Bartur, M. and Nicolet, M-A., J. Appl. Phys. 54, 5407 (1983).Google Scholar
4. By “inert marker”, we mean a marker which is fixed to the silicide lattice during reaction and does not interfere with the reaction processes.Google Scholar
5. Lau, S. S., Liau, Z. L., and Nicolet, M-A., Thin Solid Films, 47, 313 (1977).Google Scholar
6. d’Heurle, F., Petersson, S., Stolt, L., and Strizker, B., J. Appl. Phys. 53, 5678 (1982).Google Scholar
7. Lien, C.-D., Nicolet, M-A., and Lau, S. S., (unpublished).Google Scholar
8. Finstad, T. G., Mayer, J. W., and Nicolet, M-A., Thin Solid Films, 51, 391 (1978).Google Scholar
9. d’Heurle, F., Thin Solid Films, 105, 285 (1983).Google Scholar
10. Scott, D. M. and Nicolet, M-A., phys. stat. sol. (a) 66, 773 (1981).Google Scholar
11. Chu, W. K., Lau, S. S., Mayer, J. W., Muller, H., and Tu, K. N., Thin Solid Films, 25, 393 (1975).Google Scholar
12. Scott, D. M., Ph.D. Thesis, California Institute of Technology (1982).Google Scholar
13. Lien, C.-D., Nicolet, M-A., Pai, C. S., and Lau, S. S., (unpublished).Google Scholar
14. Pretorius, R., Liau, Z. L., Lau, S. S., and Nicolet, M-A., Appl. Phys. Lett. 29, 598 (1976).Google Scholar
15. Pretorius, R., Botha, A. P., and Lombard, J. C., Thin Solid Films, 79, 61 (1981).Google Scholar
16. Martinez, A., Esteve, D., Guivarc’h, A., Auvray, P., Henoc, P., and Pelous, G., Solid State Electron. 23, 55 (1980).Google Scholar
17. Lien, C.-D., Wieluński, L. S., Nicolet, M-A., and Stika, K. M., Thin Solid Films, 104, 234 (1983).Google Scholar
18. Chen, J.-R., Liu, Y.-C., and Chu, S.-D., Appl. Phys. Lett. 40, 263 (1982).Google Scholar
19. Gösele, U. and Tu, K. N., J. Appl. Phys. 53, 3252 (1982).Google Scholar