Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T23:05:38.465Z Has data issue: false hasContentIssue false

Mapping the Micromechanical Properties of Cryo-sectioned Aortic Tissue with Scanning Acoustic Microscopy

Published online by Cambridge University Press:  15 March 2011

Riaz Akhtar
Affiliation:
Manchester Materials Science Centre, School of Materials, The University of Manchester, Grosvenor Street, Manchester, M1 7HS, United Kingdom
Michael J. Sherratt
Affiliation:
Tissue Injury and Repair Group, Faculty of Medical and Human Sciences, The University of Manchester, 1.581 Stopford Building, Oxford Road, Manchester, M13 9PT, United Kingdom
Rachel E.B. Watson
Affiliation:
Dermatological Sciences Research Group, Faculty of Medical and Human Sciences, The University of Manchester, 1.443 Stopford Building, Oxford Road, Manchester, M13 9PT, United Kingdom
Tribikram Kundu
Affiliation:
Department of Civil Engineering and Engineering Mechanics, University of Arizona, Tucson, Arizona 85721, USA
Brian Derby
Affiliation:
Manchester Materials Science Centre, School of Materials, The University of Manchester, Grosvenor Street, Manchester, M1 7HS, United Kingdom
Get access

Abstract

Although the gross mechanical properties of ageing tissues have been extensively documented, biological tissues are highly heterogeneous and little is known concerning the variation of micro-mechanical properties within tissues. Here, we use Scanning Acoustic Microscopy (SAM) to map the acoustic wave speed (a measure of stiffness) as a function of distance from the outer adventitial layer of cryo-sectioned ferret aorta. With a 400 MHz lens, the images of the aorta samples matched those obtained following chemical fixation and staining of sections which were viewed with fluorescence microscopy. Quantitative analysis was conducted with a frequency scanning or V(f) technique by imaging the tissue from 960 MHz to 1.1 GHz. Undulating acoustic wave speed (stiffness) distributions corresponded with elastic fibre locations in the tissue; there was a decrease in wave speed of around 40 ms-1 from the adventitia (outer layer) to the intima (innermost).

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kielty, C.M., Sherratt, M.J., Shuttleworth, C.A., J. Cell Sci. 115, 2817 (2002).Google Scholar
2. Sherratt, M.J., Baldock, C., Haston, J.L., Holmes, D.F., Jones, C.J.P., Shuttleworth, C.A., Wess, T.J., and Kielty, C.M., J. Mol. Bio. 332, 183 (2003).Google Scholar
3. Lai-Fook, S.J. and Hyatt, R.E., J. Appl. Physiol. 89, 163 (2000).Google Scholar
4. Escoffier, C., Rigal, J. de, Rochefort, A., Vasselet, R., Leveque, J.L., and Agache, P.G., The Journal of investigative dermatology, 93, 353 (1989).Google Scholar
5. Lederle, F.A., Ann. of Intern. Med. 139, 516 (2003).Google Scholar
6. Akhtar, R., Sherratt, M.J., Bierwisch, N., Derby, B., Mummery, P.M., Watson, R.E.B., and Schwarzer, N., MRS Symp. Proc., 1097E, GG01 (2008).Google Scholar
7. Daft, C.M. and Briggs, G.A., The elastic microstructure of various tissues, J. Acoust. Soc. Am. 85, 416 (1989).Google Scholar
8. Hasegawa, K., Turner, C.H., Recker, R.R., Wu, E., and Burr, D.B., Bone, 16, 85 (1995).Google Scholar
9. Litniewski, J., Ultrasound Med. Biol. 31, 1361 (2005).Google Scholar
10. Raum, K., Kempf, K., Hein, H.J., Schubert, J., Maurer, P., Dent. Mater., 23, 1221 (2007).Google Scholar
11. Saied, A. A, Raum, K., Leguerney, I., Laugier, P., Bone, 43, 187 (2008).Google Scholar
12. Hozumi, N., Kimura, A., Terauchi, S., Nagao, M., Yoshida, S., Kobayashi, K., Saijo, Y., Proc. IEEE Ultrasonics Symp. 1, 170 (2005).Google Scholar
13. Hattori, K.. Sano, H., Saijo, Y., Kita, A., Hatori, M., Kokubun, S., Eiji, E., J. Pediatr. Orthop. B. 16, 357 (2007).Google Scholar
14. Saijo, Y., Hozumi, N., Lee, C., Nagao, M., Kobayashi, K., Oakada, N., Tanaka, N., Filho, E. dos Santos, Sasaki, H., Tanaka, M., Yambe, T., Ultrasonics, 44, e51 (2006).Google Scholar
15. Saijo, Y., Nitta, S-i, Jørgensen, C.S., and Falk, E., Proc. SPIE. 4335, 228 (2001).Google Scholar
16. Briggs, G. A. D.An Introduction to Scanning Acoustic Microscopy”, Oxford University Press, 1985).Google Scholar
17. Kundu, T., Bereiter-Hahn, J., Karl, I., Biophys. J. 78, 2270 (2000).Google Scholar
18. Jørgensen, C.S., Hasenkam, J.M., and Kundu, T., Proc. SPIE, 4335, 244 (2001).Google Scholar
19. Kundu, T., J. Appl. Mech-T ASME, 59, 54 (1992).Google Scholar
20. Carvalho, H.F. de, and Taboga, S.R., Histochem. Cell. Biol. 106, 587 (1996).Google Scholar
21. Jensen, A.S., Baandrup, U., Hasenkam, J. M., Kundu, T., Jorgensen, C.S., Ultrasound Med. Biol. 32, 1943 (2006).Google Scholar
22. Liang, H-D., and Blomley, M.J.K., Br. J. Radiol. 76, S140 (2003).Google Scholar