No CrossRef data available.
Published online by Cambridge University Press: 21 February 2011
Atomistic simulations were used to study the configurations of defects in copper aluminum alloy (2% copper, 98% aluminum). In the presence of free surface, the copper atoms migrated towards the surface. When the aluminum cell (about 2000 atoms) contained a dislocation, copper atoms segregated near the dislocation core on the compressional side. In presence of a grain boundary, copper atoms moved into the boundary plane. The segregation in these simulations resulted from reduction in localized strain near the structural defects.