Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-14T02:38:20.217Z Has data issue: false hasContentIssue false

Manipulating the Hydrogen-Bonding Configuration in ETP-CVD a-Si:H

Published online by Cambridge University Press:  01 February 2011

Michael Wank
Affiliation:
[email protected], TU Delft, EWI, Oude Delft 88a, Delft, 2611CE, Netherlands
R. A. C. M. M. van Swaaij
Affiliation:
[email protected], Delft University of Technology, DIMES-ECTM, P. O. Box 5053, Delft, 2600 GB, Netherlands
M. C. M. van de Sanden
Affiliation:
[email protected], Eindhoven University of Technology, Department of Applied Physics, P.O.Box 513, Eindhoven, 5600 MB, Netherlands
Get access

Abstract

The effect of ion bombardment on the relationship between the critical hydrogen concentration and the reactor pressure has been investigated for hydrogenated amorphous silicon (a-Si:H) deposited with the expanding thermal plasma-CVD (ETP-CVD) method. By changing the reactor pressure the ionic cluster formation in the plasma can be varied. It is observed that the decrease of the critical hydrogen concentration with increasing reactor pressure can not be compensated by ion bombardment at 14V biasing. Biasing with 20V however increases the critical hydrogen concentration nearly up to the value obtained at low pressures. This indicates that the incorporation of ionic cluster formed at elevated reactor pressures can be reduced by substrate biasing, possibly due to break-up upon impact on the substrate surface or due to processes occurring in the secondary plasma close to the substrate.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Smets, A. H. M., Kessels, W. M. M., and Sanden, M. C. M. van de, Appl. Phys. Lett. 82, 1547 (2003).Google Scholar
2 Kaufman, H. R. and Harper, J. M. E., J. Vac. Sci. Technol. A, 22, 221 (2004).Google Scholar
3 Kessels, W. M. M., Sanden, M. C. M. van de, and Schram, D. C., Appl. Phys. Lett. 72, 2397 (1998).Google Scholar
4 Petit, A. M. H. N., Ph. D. thesis, Delft University of Technology (2006).Google Scholar
5 Brodsky, M. H., Thin Solid Films 40, L23 (1977).Google Scholar
6 Kessels, W. M. M., Leewis, C. M.. Leroux, A., Sanden, M. C. M. van de, and Schram, D. C., J. Vac. Sci. Technol. A17, 1531 (1999).Google Scholar
7 Ring, M. A., Dalal, V. L., and Muthukrishnan, K. K., J. Non-Cryst. Solids 338-340, 6164 (2004).Google Scholar
8 Drevillon, B., Perrin, J., Siefert, J. M., Huc, J., Lioret, A., G. de Rosny, and J. P. M. Schmitt, Appl. Phys. Lett. 42, 801 (1983).Google Scholar
9 Hamers, E. A. G., Sark, W. G. J. H. M. van, Bezemer, J., Meiling, H., and Weg, W. F. Van der, J. Non-Cryst. Solids 226, 205 (1998).Google Scholar
10 Herak, T. V., Chau, T. T., Mejia, S. R., Shufflebotham, P. K., Schellenberg, J. J., Card, H. C., Kao, K. C., and McLeod, R. D., J. Non-Cryst. Solids 97-98, 277 (1987).Google Scholar
11 Kessels, W. M. M., Leroux, A., Boogaarts, M. G. H., Hoefnagels, J. P. M., Sanden, M. C. M. van de, and Schram, D. C., J. Vac. Sci. Technol. A. 19, 467 (2001).Google Scholar
12 Kessels, W. M. M., Sanden, M. C. M. van de, Severens, R. J., and Schram, D. C., J. Appl. Phys. 87, 3313 (2000).Google Scholar
13 Kawamura, E., Vahedi, V., Liebermann, M. A., and Birdsall, C. K., Plasma Sources Sci. Tech. 8, R45 (1999).Google Scholar
14 Acco, S., Williamson, D. L., W. G. J. H. M. van Sark, W. C. Sinke, W. F. van der Weg, A. Polman, and S. Roorda, Phys. Rev. B 58, 12853 (1998).Google Scholar
15 Beyer, W. and Zastrow, U., J. Non-Cryst. Solids 227-230, 880 (1998).Google Scholar