Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T17:35:57.309Z Has data issue: false hasContentIssue false

Manifestation of structural defects in photoluminescence from GaN

Published online by Cambridge University Press:  01 February 2011

M. A. Reshchikov
Affiliation:
Virginia Commonwealth University, Richmond, VA 23284
J. Jasinski
Affiliation:
Lawrence Berkeley National Laboratory, Berkeley, CA 94720
F. Yun
Affiliation:
Virginia Commonwealth University, Richmond, VA 23284
L. He
Affiliation:
Virginia Commonwealth University, Richmond, VA 23284
Z. Liliental-Weber
Affiliation:
Lawrence Berkeley National Laboratory, Berkeley, CA 94720
H. Morkoç
Affiliation:
Virginia Commonwealth University, Richmond, VA 23284
Get access

Abstract

Sharp peaks of unidentified nature are detected in the low-temperature photoluminescence (PL) spectrum of undoped GaN in the photon energy range between 3.0 and 3.46 eV. These PL lines are commonly attributed to excitons bound to yet unidentified structural defects. We analyzed X-ray diffraction data in a large set of GaN samples grown by molecular beam epitaxy in order to find any correlation between these unusual PL peaks and the GaN crystal structure. Moreover, in selected samples exhibiting such peaks, cross-sectional transmission electron microscopy was taken in an effort to detect the presence and density of various structural defects. The preliminarily results indicate that most of unusual PL lines in GaN (Y lines) are not directly related to the observed structural defects, such as edge, screw, mixed dislocations, or stacking faults. However, there exists the possibility that point defects trapped at dislocations or other structural defects are responsible for these PL lines.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Reshchikov, M. A., Huang, D., Yun, F., Visconti, P., He, L., Morkoç, H., Jasinski, J., Liliental-Weber, Z., Molnar, R. J., Park, S. S., and Lee, K. Y., J. Appl. Phys. 94, 5623 (2003), and references there in.Google Scholar
2. Dean, P. J., Phys. Stat. Sol. (a) 81 (1984), 625;Google Scholar
Dean, P. J., Williams, G. M., and Blackmore, G., J. Phys. D 17 (1984), 2291.Google Scholar
3. Huang, T. F., Marshall, A., Spruytte, S., and Harris, J. S. Jr, J. Cryst. Growth 200, 362 (1999).Google Scholar
4. Albrecht, M., Christiansen, S., Salviati, G., Zanotti-Fregonara, C., Rebane, Y. T., Shreter, Y. G., Mayer, M., Pelzmann, A., Kamp, M., Ebeling, K. J., Bremser, M. D., Davis, R. F., and Strunk, H. P., Mat. Res. Soc. Symp. Proc. 468, 293 (1997).Google Scholar
5. Rebane, Y. T., Shreter, Y. G., and Albrecht, M., Mat. Res. Soc. Symp. Proc. 468, 179 (1997).Google Scholar
6. Shreter, Y. G., Rebane, Y. T., Davis, T. J., Barnard, J., Darbyshire, M., Steeds, J. W., Perry, W. G., Bremser, M. D., and Davis, R. F., Mat. Res. Soc. Symp. Proc. 449, 683 (1997).Google Scholar
7. Metzger, T., Hopler, R., Born, E., Ambacher, O., Stutzmann, M., Stommer, R., Schuster, M., Gobel, H., Christiansen, S., Albrecht, M., and Strunk, H. P., Phylos. Mag. A 77, 1013 (1998).Google Scholar
8. Gay, R., Hirsch, P. B., and Kelly, A., Acta Metall. 1, 315 (1953).Google Scholar
9. Reshchikov, M. A. and Korotkov, R. Y., Rhys. Rev. B 64, 115205 (2001).Google Scholar
10. Sugahara, T., Sato, H., Hao, M., Naoi, Y., Kurai, S., Tottori, S., Yamashita, K., Nishino, K., Romano, L. T., and Sakai, S., Jpn. J. Appl. Phys. 37, L398 (1998).Google Scholar
11. Schuck, P. J., Mason, M. D., Grober, R. D., Ambacher, O., Lima, A. P., Miskys, C., Dimitrov, R., and Stutzmann, M., Appl. Phys. Lett. 79, 952 (2001).Google Scholar