Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T01:54:53.068Z Has data issue: false hasContentIssue false

Magnetotransport in Thin Films of Lan-nxCa1+nxMnnO3n+1 (n=2,3, and ∞)

Published online by Cambridge University Press:  10 February 2011

H. Asano
Affiliation:
Dept. of Crystalline Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464–01, Japan, [email protected]
J. Hayakawa
Affiliation:
Dept. of Crystalline Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464–01, Japan, [email protected]
M. Matsui
Affiliation:
Dept. of Crystalline Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464–01, Japan, [email protected]
Get access

Abstract

With a use of the epitaxial a-axis thin films of perovskite series Lan-nxCa1+nxMnnO3n+1 (n=2,3, and ∞) with fixed carrier concentration (x=0.3), the transport properties of the series compounds have been examined to be associated with the difference in the number of the MnO2 layers. Results have indicated that a reduction in the number of layers results in systematic changes in the various features. These include an increase in resistivity, a decrease in resistivity peak temperature Tcρ corresponding to the metal-insulator transition, an enhancement of the maximum MR near Tcρ, and an increase in low temperature intrinsic MR. In order to explain the variation in these features with the number of MnO2 layers, it is necessary to take both anisotropie c-axis transfer interaction and two-dimensional spin fluctuation into account.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Helmolt, R. von., Wecker, J., Holzapfel, B., Schultz, L, and Samwer, K., Phys. Rev. Lett. 71, 2331 (1993).Google Scholar
2. Chahara, K., Ohno, T., Kasai, M., and Kozono, Y., Appl. Phys. Lett. 63, 1990 (1993).Google Scholar
3. McCormack, M., Jin, S., Tiefel, T. H., Fleming, R. M., Phillips, J. M., and Ramesh, R., Appl. Phys. Lett. 64, 3045 (1994).Google Scholar
4. Canedy, C. L., Ibsen, K. B., Xiao, G., Sun, J. Z., Gupta, A., and Gallagher, W. J., J. Appl. Phys. 79, 4546 (1996).Google Scholar
5. Schiffer, P., Ramirez, A. P., Bao, W., and Cheong, S. W., Phys. Rev. Lett. 75, 3336 (1995).Google Scholar
6. Hwang, H. Y., Cheong, S. W., Radaelli, P. G., Marezio, M., and Batlogg, B., Phys. Rev. Lett. 75, 914(1996).Google Scholar
7. Moritomo, Y., Tomioka, Y., Asamitsu, A., Tokura, Y., and Matsui, Y., Nature 380, 141 (1996).Google Scholar
8. Asano, H., Hayakawa, J., and Matsui, M., Appl. Phys. Lett. 68, 3638 (1996).Google Scholar
9. Asano, H., Hayakawa, J., and Matsui, M., Phys. Rev. B56, 5395 (1997).Google Scholar
10. Kimura, T., Tomioka, Y., Kuwahara, H., Asamitsu, A., Tamura, M., and Tokura, Y., Science 274, 1698(1996).Google Scholar
11. Argyriou, D. N., Mitchell, J. F., Goodenough, J. B., Chamaissem, O., Short, S., and Joegensen, J. D., Phys. Rev. Lett. 78, 1568 (1997).Google Scholar
12. Asano, H., Hayakawa, J., and Matsui, M., Appl. Phys. Lett. 71, 844 (1997).Google Scholar
13. Furukawa, N., J. Phys. Soc. Jpn. 63, 3214 (1994).Google Scholar
14. Perring, T. G., Aeppli, G., Moritomo, Y., and Tokura, Y., Phys. Rev. Lett. 78, 3197 (1977).Google Scholar
15. Mitchell, J. F., Argyriou, D. N., Joegensen, J. D., Hinks, D. G., Potter, C. D., and Bader, S. D., Phys. Rev. B55, 63 (1997).Google Scholar