Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T02:33:10.701Z Has data issue: false hasContentIssue false

Magnetotransport in Epitaxial Trilayer Junctions Fabricated from 90° Off-Axis Sputtered Manganite Films

Published online by Cambridge University Press:  10 February 2011

J. S. Noh
Affiliation:
Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708
T. K. Nath
Affiliation:
Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708
J. Z. Sun
Affiliation:
IBM T.J. Watson Research Center, PO Box 218, Yorktown Heights, NY 10598
C. B. Eom
Affiliation:
Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708
Get access

Abstract

We report studies on La1−xSrxMnO3 /SrTiO3/ La1−xSrxMnO3 (x=0.33) trilayer junctions made using 90° off-axis sputtering. Both (110) NdGaO3 and (001) (LaAlO3)0.3-(Sr2AlTaO6)0.7 (LSAT) are used for substrates. Optical lithography is used for junction formation. These sputtered trilayers show improved junction resistance uniformity over trilayers made using laser ablation. A magnetoresistance of ∼100% is observed for junctions on LSAT with 30 Å barrier at 13 K and around 100 Oe. The shape of junction magnetoresistance vs. field depends both on barrier thickness and on substrate type, suggesting that both inter-layer coupling and substrateinduced-strain play a role in determining the junction's micromagnetic state. These results indicate better junction interfaces can be obtained for manganite trilayer junctions by 90° off-axis sputtering.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Inoue, J. and Maekawa, S., Phys. Rev. Lett. 74, 3407 (1995).Google Scholar
2. Lyu, P., Xing, D. Y., and Dong, J., Phys. Rev. B. 58, 54 (1998).Google Scholar
3. Asano, H., Hayakawa, J., and Matsui, M., Appl. Phys. Lett. 71, 844 (1997).Google Scholar
4. Wiedenhorst, B., Hofener, C., Lu, Y., Klein, J., Alff, L., Gross, R., Freitag, B. H., and Mader, W., Appl. Phys. Lett. 74, 3636 (1999).Google Scholar
5. Park, J.-H., Vescovo, E., Kim, H.-J., Kwon, C., Ramesh, R., and Venkatesan, T., Phys. Rev. Lett. 81, 1953 (1998).Google Scholar
6. Zener, C., Phys. Rev. 82, 403 (1951).Google Scholar
7. Anderson, P. W. and Hasegawa, H., Phys. Rev. 100, 675 (1955).Google Scholar
8. Sun, J. Z., Phil. Trans. R. Soc. Lond. 356, 1693 (1998).Google Scholar
9. Daughton, J. M.. J Appl. Phys. 81, 3758 (1997).Google Scholar
10. Tajanovic, Z., Kwon, C., Robson, M. C., Kim, K.-C., Rajeswari, M., Ramesh, R., Venkatesan, T., Lofland, S. E., Bhagat, S. M., and Fork, D., Appl. Phys. Lett. 69, 1005 (1996).Google Scholar
11. Li, X. W., Lu, Yu, Gong, G. Q., G., Xiao, Gupta, A., Lecoeur, P., Sun, J. Z., Wang, Y. Y., and Dravid, V. P., J. Appl. Phys. 81, 5509 (1997).Google Scholar
12. Sun, J. Z., Abraham, D. W., Roche, K., Parkin, S. S. P., Appl. Phys. Lett. 73, 1008 (1998).Google Scholar
13. Sun, J. Z., J. Magn. Magn. Mater. 202, 157 (1999).Google Scholar
14. Sun, J. Z., In Colossal Magnetoresistance Oxides, ed. Tokura, Y.. Singapore: Gordon & Breach (1998)Google Scholar
15. Rao, R. A., Lavric, D., Nath, T. K., Eom, C. B., Wu, L., and Tsui, F., Appl. Phys. Lett. 73, 3294 (1998).Google Scholar
16. Gallagher, W. J., Parkin, S. S. P., Lu, Yu, Bian, X. P., Marley, A., and Roche, K. P., Altman, R. A., Rishton, S. A., Jahnes, C., Shaw, T. M., and Xiao, G., J. Appl. Phys. 81, 3741 (1997).Google Scholar
17. Lu, Yu, Altman, R. A., Marley, A., Rishton, S. A., Trouilloud, P. L., Xiao, G., Gallagher, W. J., and Parkin, S. S. P., Appl. Phys. Lett. 70, 2610 (1997).Google Scholar
18. Gupta, A. and Sun, J. Z., J. Magn. Magn. Mater. 200, 24 (1999).Google Scholar