Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-28T23:39:21.304Z Has data issue: false hasContentIssue false

Magnetotransport and Interface Magnetism in Manganite Heterostructures: Implications for Spin Polarized Tunneling

Published online by Cambridge University Press:  10 February 2011

Moon-Ho Jo
Affiliation:
Department of Materials Science, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ, United Kingdom
N.D. Mathur
Affiliation:
Department of Materials Science, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ, United Kingdom
J.E. Evetts
Affiliation:
Department of Materials Science, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ, United Kingdom
M.G. Blamire
Affiliation:
Department of Materials Science, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ, United Kingdom
Get access

Abstract

The electronic and magnetic structure at surfaces and interfaces in mixed valence manganites is an active area of research. To study localized properties of interface magnetism in heterostructures we have conducted both current in-plane and current perpendicular-plane measurements in multilayers and trilayer tunnel junctions, respectively. Initial study of the transport in multilayers, consisting of alternating La0.7Ca0.3MnO3 and SrTiO3 with different layer thickness provided information on vertical inhomogeniety in the manganite layers and disordered interfaces. Issues of lattice mismatched strain, structural inhomogeniety were addressed. Trilayer tunnel junctions have been fabricated with the aim of correlating tunneling magnetoresistance to the interface magnetism deduced from multilayer measurements. We describe devices incorporating a novel barrier material which have yielded single domain switchings and very high TMR values above 77 K.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Sun, J.Z., Philos. Trans. R. Soc. London, Ser. A 356, 1663 (1998).Google Scholar
2 Viret, M., Drouet, M., Nassar, J., Coutour, J.P., Fermon, C., and Fert, A., Europhys. Lett. 39, 545 (1997).Google Scholar
3 Obata, T., Manako, T., Shimakawa, Y., and Kubo, Y., Appl. Phys. Lett. 74, 290 (1999).Google Scholar
4 Jo, M.-H., Mathur, N.D., Evetts, J.E., Blamire, M.G., Bibes, M., Fontcuberta, J., Appl. Phys. Lett. 75, (1999) 3689 Google Scholar
5 Aarts, J., Freisem, S., Hendrix, R. and Zandbergen, H.W., Appl. Phys. Lett. 72, 2975 (1998).Google Scholar
6 Blamire, M.G., Teo, B.-S., Durrell, J.H., Mathur, N.D., Barber, Z.H., McManus Driscoll, J.L., Cohen, L.F. and Evetts, J.E., J. Magn. Magn. Mater. 191, 359 (1998).Google Scholar
7 Venkatesan, T., Rajeswari, M., Dong, Z.W., Ogale, S.B. and Ramesh, R., Philos. Trans. R. Soc. London, Ser. A 356, 1661 (1998).Google Scholar
8 Sun, J.Z., Abraham, D.W., Rao, R.A. and Eom, C.B., AppL. Phys. Lett. 74, 3017 (1999).Google Scholar
9 Gupta, A., Gong, G. Q., Xiao, G., Duncombe, P.R., Lecoeur, P., Trouilloud, P., Wang, Y. Y., Dravid, V. P. and Sun, J. Z., Phys. Rev. B 54, 15629 (1996).Google Scholar
10 Park, J.-H., Vescovo, E., Kim, H.-J., Kwon, C., Ramesh, R. and Venkatesan, T., Phys. Rev. Lett. 81, 1953 (1998).Google Scholar
11 Julliere, M., Phys. Lett. 54A, 225 (1975).Google Scholar
12 Soulen, R.J. Jr, Byers, J.M., Osofsky, M.S., Nadgorny, B., Ambrose, T., Cheong, S.F., Broussard, P.R., Tanaka, C.T., Nowak, J., Moodera, J.S., Barry, A., Coey, J.M.D., Science 282, 85 (1998)Google Scholar
13 Okimoto, Y., Katsufuji, K., Ishikawa, T., Urushibara, A., Arima, T. and Tokura, Y., Phys. Rev. Lett. 75, 109 (1995).Google Scholar
14 Wei, J.Y.T., Yeh, N.-C., and Vasquez, R.P., Phys. Rev. Lett. 79, 5150 (1997).Google Scholar