No CrossRef data available.
Published online by Cambridge University Press: 21 March 2011
Magnetization reversals in sputtered Co electrodes of a magnetic tunnel junction are studied using transport measurements, magneto-optic Kerr magnetometry and microscopy. Using the tunnel magneto-resistive effect as a probe for micromagnetic studies, we first evidence the existence of an unexpected domain structure in the soft Co layer. This domain structure originates from the duplication of the domain structure of the hard Co layer template into the soft layer via ferromagnetic inter-electrode coupling. A detailed analysis of the kerr microscopy images shows that all features appearing in the variation of tunnel resistance as a function of the applied field are associated to the domain phase evolution of each electrode. By tailoring the magnetic properties of the hard Co layer, we have demonstrated that the appearance of the domain duplication is driven by the magnetic anisotropy of the hard layer. Finally, a brief theoretical description of the domain duplication process allows us to extract the main parameters governing the effect.