Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T17:49:00.385Z Has data issue: false hasContentIssue false

Magneto-optical study of grain boundaries, interfaces and grain boundary networks in YBaCuO

Published online by Cambridge University Press:  18 March 2011

Ch. Jooss
Affiliation:
Institut für Materialphysik, University of Göttingen, Germany
L.-O. Kautschor
Affiliation:
Institut für Materialphysik, University of Göttingen, Germany
M.P. Delamare
Affiliation:
Institut für Materialphysik, University of Göttingen, Germany
B. Bringmann
Affiliation:
Zentrum für Funktionswerkstoffe, Göttingen, Germany
K. Guth
Affiliation:
Institut für Materialphysik, University of Göttingen, Germany
V. Born
Affiliation:
Institut für Materialphysik, University of Göttingen, Germany
S. Sievers
Affiliation:
Institut für Materialphysik, University of Göttingen, Germany
H. Walter
Affiliation:
Zentrum für Funktionswerkstoffe, Göttingen, Germany
J. Dzick
Affiliation:
Zentrum für Funktionswerkstoffe, Göttingen, Germany
J. Holzmann
Affiliation:
Zentrum für Funktionswerkstoffe, Göttingen, Germany
H. C. Freyhardt
Affiliation:
Institut für Materialphysik, University of Göttingen, Germany Zentrum für Funktionswerkstoffe, Göttingen, Germany
B. de Boer
Affiliation:
IFW Dresden, Institute of metallic materials, Germany
B. Holzapfel
Affiliation:
IFW Dresden, Institute of metallic materials, Germany
F. Sandiumenge
Affiliation:
Institut de Ciència de Materials, Universitat Autònoma de Barcelona, Catalonia, Spain
Get access

Abstract

Using quantitative magneto-optics and an inversion scheme of Biot-Savart's law the local current carrying capability of various types of grain boundaries (GB's) and interfaces in YBaCuO thin films and bulk material was investigated. In all GB's and interfaces a spatial variation of the local critical current density jc was observed which, however, has different reasons, such as microstructural inhomogeneities, magnetic field dependence of jc and size effects in extended GB's and networks of low angle grain boundaries (LAGB's).

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Dimos, D., Chaudhari, P., Mannhart, J., and LeGoues, F. K., Phys. Rev. Lett. 61 219 (1988); D. Dimos, P. Chaudhari, J. Mannhart, Phys. Rev. B 41 4038 (1990).Google Scholar
[2] Hilgenkamp, H., Mannhart, J., and Mayer, B., Phys. Rev. B 53 14586 (1996).Google Scholar
[3] Field, M. B., Larbalestier, D. C., Parikh, A., and Salama, K., Physica C 280 221 (1997).Google Scholar
[4] Miller, D. J., Todt, V. R., Louis-Weber, M. St., Zhang, X. F., Steel, D. G., Field, M. B., and Gray, K. E., Mat. Sci. and Engineering, B53 125 (1998).Google Scholar
[5] Heinig, N. F., Redwing, R. D., Nordman, J. E., and Larbalestier, D. C., Phys. Rev. B 60 1409 (1999).Google Scholar
[6] Gray, K. E., Field, M. B., and Miller, D. J., Phys. Rev. B 58 9543 (1998).Google Scholar
[7] Eltsev, Y. F., Nakao, K., Yamada, Y., Hirabayashi, I., Ishimaru, Y., Tanabe, K., Enomoto, Y., Wen, J. and Koshizuka, N., to appear in IEEE Trans. Appl. Supercond. March, 2001.Google Scholar
[8] Gurevich, A. and Pashitskii, E. A., Phys. Rev. B 57 13878 (1998).Google Scholar
[9] Browning, N. D., Buban, J. P., Nellist, P. D., Norton, D. P., Chisholm, M. F., and Pennycook, S. J., Physica C 294 183 (1998).Google Scholar
[10] Haage, T., Zegenhagen, J., Li, J.Q., Habermeier, H.-U., Cardona, M., Jooss, Ch., Warthmann, R., Forkl, A., and Kronmüller, H., Phys. Rev. B 56 8408 (1997).Google Scholar
[11] Jooss, Ch., Warthmann, R., and Kronmüller, H., Phys. Rev. B 61 12433 (2000).Google Scholar
[12] Jooss, Ch., Delamare, M. P., Walter, H., Bringmann, B., Leenders, A., and Freyhardt, H. C., Physica C, 341–348 1423 (2000).Google Scholar
[13] Grechiskin, R.M., Goosev, M.Yu., Ilyahsenko, S.E., Neustroev, N.S., J. Magn. Mat. 157–158 305 (1996).Google Scholar
[14] Jooss, Ch., Forkl, A., Warthmann, R., Habermeier, H.-U., Leibold, B., and Kronmüller, H., Physica C 266 235 (1996).Google Scholar
[15] Jooss, Ch., Forkl, A., Warthmann, R., Kronmüller, H., Physica C 299 215 (1998).Google Scholar
[16] Will'en, Dag W. A. and Salama, Kamel, Physica C 201 311 (1992).Google Scholar
[17] Todt, V. R., Zhang, X. F., Miller, D. J., Louis-Weber, M. St., Dravid, V.P., Appl. Phys. Lett. 69 3746 (1996).Google Scholar
[18] Delamare, M.P., Walter, H., Bringmann, B., Leenders, A., and Freyhardt, H. C., Physica C 329 160 (2000).Google Scholar
[19] Jooss, Ch., Delamare, M. P., Walter, H., Bringmann, B., Leenders, A., and Freyhardt, H. C., 2000, submitted to Superc. Sci. Techn.Google Scholar
[20] Delamare, M.P., Jooss, Ch., Bringmann, B., Walter, H., Garcia-Moreno, F., Leenders, A., and Freyhardt, H. C., to appear in IEEE Trans. Appl. Supercond. March 2001.Google Scholar
[21] Delamare, M.P., Walter, H., Bringmann, B., Leenders, A., Freyhardt, H.C., Physica C, 323 107 (1999).Google Scholar
[22] Walter, H., Delamare, M. P., Bringmann, B., Leenders, A., Freyhardt, H. C., J. Mat. Res. 15 1231 (2000).Google Scholar
[23] Walter, H., Bringmann, B., Delamare, M. P., Leenders, A., and Freyhardt, H. C., 1999, Proceedings of the European Conference of Applied Superconductivity, EUCAS'99.Google Scholar
[24] Sandiumenge, F., unpublished.Google Scholar
[25] Jooss, Ch., Warthmann, R., Kronmüller, H., Haage, T., Habermeier, H.-U., and Zegenhagen, J., Phys. Rev. Lett. 82 632 (1999).Google Scholar
[26] Jooss, Ch., Warthmann, R., Forkl, A., Haage, T., Zegenhagen, J., Habermeier, H.-U., and Kronmüller, H., Physica C 282–287 2311 (1997).Google Scholar
[27] Albrecht, J., Leonhardt, S., and Kronmüller, H., Phys. Rev. B, 63 January 1. (2001).Google Scholar
[28] Gray, K. E., Miller, D. J., Field, M. B., Kim, D. H., and Berghuis, P., Physica C 341–348, 1397 (2000).Google Scholar
[29] Polyanskii, A. A., Gurevich, A., Pashitski, A. E., Heinig, N.F., Redwing, R. D., Nordman, J. E., and Larbalestier, D. C., Phys. Rev. B 53 8687 (1996).Google Scholar
[30] Guth, K., Krebs, U., Freyhardt, H. C., and Jooss, Ch., submitted to PRB.Google Scholar
[31] Daniels, G., Gurevich, A., and Larbalestier, D. C., Appl. Phys. Lett. 77 1 (2000).Google Scholar
[32] Holzapfel, B., Verebelyi, D., Cantoni, C., Paranthaman, M., Sales, B., Feenstra, R., Christen, D. and Norton, D. P., Physica C 341–348, 1431, (2000).Google Scholar
[33] Diaz, A., Mechin, L., Berghuis, P., and Evetts, J. E., Phys. Rev. B 58 R2960 (1998).Google Scholar
[34] Jooss, Ch., unpublished.Google Scholar
[35] Freyhardt, H. C., Hoffmann, J., Wiesmann, J., Dzick, J., Heinemann, K., Issaev, A., Usoskin, A., and Garcia-Moreno, F., Appl. Supercond. 4 435 (1996).Google Scholar
[36] Boer, B. de, Reger, N., Opitz, R., Eickemeyer, J., Holzapfel, B., Schultz, L., 12th International Conference on Textures of Materials, McGill University, Montreal/Canada, Proceedings, 2, 944 (1999).Google Scholar
[37] Feldmann, D. M., Reeves, J. L., Polyanskii, A. A., Kozlowski, G., Biggers, R. R., Nekkanti, R. M., Maartense, I., Tomsic, M., Barnes, P., Oberly, C. E., Peterson, T. L., Babcock, S. E, and Larbalestier, D. C., Appl. Phys. Lett. 77 2906 (2000)Google Scholar