Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-27T03:42:49.405Z Has data issue: false hasContentIssue false

Magneto-optical response of a one-dimensional all-garnet photonic crystal in transmission and reflection

Published online by Cambridge University Press:  01 February 2011

S. Kahl
Affiliation:
Microelectronics and IT, Royal Institute of Technology, S-16440 Stockholm, Sweden
A. M. Grishin
Affiliation:
Microelectronics and IT, Royal Institute of Technology, S-16440 Stockholm, Sweden
Get access

Abstract

We present spectra of transmittance, reflectance, and Faraday rotation of transmitted and reflected light for a periodic garnet multilayer structure with a central defect layer. The multilayer consists of alternating layers of bismuth and yttrium iron garnet, is 1.5 μm thick, and was prepared by pulsed laser deposition. For the reflection measurements, a silver mirror was evaporated on top of the multilayer. Faraday rotation is strongly enhanced at resonances in transmission and reflection. The peak value obtained at 748 nm in transmission is 5.3 deg and at 733 nm in reflection is 18 deg. A single layer BIG film of equivalent thickness shows 2.2 deg Faraday rotation at 748 nm. We find rather good agreement between measured and calculated spectra. Using calculations of the distributions of light intensities at different wavelengths inside the multilayer, we are able to give consistent qualitative explanations for the enhancement of Faraday rotation. We also find numerically that - at moderate strengths of the optical resonances - a linear relation exists between Faraday rotation and the intensity integrated over all magneto-optically active layers, if absorption is neglected.

We suggest to modify the usual sensor film for magneto-optical imaging by introducing a Bragg mirror consisting of heteroepitaxial garnet layers between the substrate and sensor film. For one example situation, we show by calculation that the quality factors of image contrast and optical efficiency can be higher for heteroepitaxial garnet multilayers than for single-layer iron garnet films currently in use as sensor films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Joannopoulos, J. D., Meade, R. D., and Winn, J. N., Photonic Crystals (Princeton University Press, Princeton, 1995).Google Scholar
2. Inoue, M., Arai, K., Fuji, T., Abe, M., J. Appl. Phys. 85, 5768 (1999).Google Scholar
3. Steel, M. J., Levy, M., and Osgood, R. M., IEEE Photon. Techn. Lett., 12, 1171 (2000).Google Scholar
4. Levy, M. and Yang, H. C. and Steel, M. J. and Fujita, J., J. Lightwave Techn., 12, 1964 (2001).Google Scholar
5. Kato, H. and Inoue, M., J. Appl. Phys., 91, 7017 (2002).Google Scholar
6. Kahl, S. and Grishin, A. M., Appl. Phys. Lett., 84, 1438 (2004).Google Scholar
7. Steel, M. J., Levy, M., and Osgood, R. M., J. Lightwave Technol., 18, 1297 (2000).Google Scholar
8. Inoue, M., Arai, K., Fujii, T., and Abe, M., J. Appl. Phys., 83, 6768 (1998).Google Scholar
9. Jooss, Ch. and Albrecht, J. and Kuhn, H. and Leonhardt, S. and Kronmüller, G., Rep. Prog. Phys., 65, 651 (2002).Google Scholar
10. Dorosinskii, L. A., Indenbom, M. V., Nikitenko, V. I., Ossip'yan, Y. A., Polyanskii, A. A., and Vlasko-Vlasov, V. K., Physica C, 203, 149 (1992).Google Scholar
11. Koblischka, M. R. and Wijngaarden, R. J., Supercond. Sci. Technol., 8, 199 (1995).Google Scholar
12. Shamonin, M., Klank, M., Hagedorn, O., and Dötsch, H., Appl. Opt., 40, 3182 (2001).Google Scholar
13. Goa, P. E., Hauglin, H., Olsen, A. A. F., Baziljevich, M., and Johansen, T. H., Rev. Sci. Instr., 74, 141 (2003).Google Scholar
14. Klank, M., Hagedorn, O., Holthaus, C., Shamonin, M., and Dötsch, H., NDT & E International 36, 375 (2003).Google Scholar
15. Kahl, S. and Grishin, A. M., J. Magn. Magn. Mater., 278, 244 (2004).Google Scholar
16. Yeh, P., Optical Waves in Layered Media (John Wiley & Sons, New York, U.S.A, 1988).Google Scholar
17. Visnovsky, S., Postava, K., and Yamaguchi, T., Czech. J. Phys., 51, 917 (2001).Google Scholar
18. Weber, M. J., Handbook of Optical Materials (CRC Press, Boca Raton, U.S.A., 2003).Google Scholar
19. Hecht, E. H., Optics (Addison Wesley, Reading, U.S.A., 1998).Google Scholar
20. Hansen, P., Klages, C. P., Schuldt, J., and Witter, K., Phys. Rev. B, 31, 5858 (1985).Google Scholar