Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-19T06:46:33.456Z Has data issue: false hasContentIssue false

Magnetoluminescence Studies in Ordered InGap2

Published online by Cambridge University Press:  10 February 2011

E. D. Jones
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-0350, USA
R. P. Schneider Jr.
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-0350, USA
A. Mascarenhas
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401, USA
Get access

Abstract

Photoluminescence measurements on ordered InGaP2 were studied as a function of temperature, laser power density, and magnetic field. The temperature varied between 1.4 and 300 K, the laser power densities ranged from 10 nW/cm2 to 20 W/cm2, and the maximum magnetic field was 13.6 T. The data show two spectra, excitonic and band-to-band transitions, depending upon the incident laser power density. A consistent interpretation of the band-to-band spectrum leads to a spatially separated electron-hole transitions between the ordered domains. Three different mechanisms for spatially indirect transitions are presented. An analysis of the linear data also allows a determination of the valence-band mass in the 100 direction of mv ∼0.25 m0.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Zunger, A., Wagner, S., and Petroff, P. M., J. Electron. Materials 22, 3, (1993).Google Scholar
2. Zunger, A. and Mahajan, S., Handbook on Semiconductors Volume 3, edited by Moss, T. S., Elsevier North-Holland, NY 1994.Google Scholar
3. DeLong, M. C., Ohlsen, W. D., Viohl, I., Taylor, P. C., and Olson, J. M., J. Appl. Phys. 70, 2780 (1991).Google Scholar
4. Jones, E. D.. Schneider, R. P., Jr., Lee, S. M., and Bajaj, K. K., Rapid Communications, Phys. Rev. B 46, 7225 (1992).Google Scholar
5. Driessen, F. A. J. M., Bauhuis, G. J., Olsthoorn, S. M., and Giling, L. J., Phys. Rev. B 48, 7889 (1993).Google Scholar
6. Fouquet, J. E., Minsky, M. S., and Rosner, S. J., Appl. Phys. Lett. 63, 3212 (1993).Google Scholar
7. Horner, G. S., Mascarenhas, A., Alonso, R. G., Froyen, S., Bertness, K. A., and Olson, J. M., Phys. Rev. B 49, 1727 (1994).Google Scholar
8. Emanuelsson, P., Drechsler, M., Hofmann, D. M., Meyer, B. K., Moser, M., and Scholz, F., Appl. Phys. Lett. 64, 2849 (1994).Google Scholar
9. Driessen, F. A. J. M., private communication.Google Scholar
10. Kim, D. S., Ko, H. S., Kim, Y. M., Rhee, S. J., Kim, W. S., Woo, J. C., Choi, H. J., lhm, J., Woo, D. H., and Kang, K. N. (To be published 1995.)Google Scholar