Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T01:47:28.215Z Has data issue: false hasContentIssue false

Magneto-dielectric anomaly in (Bi0.95Nd0.05)(Fe0.97Mn0.03)O3 electroceramic

Published online by Cambridge University Press:  05 February 2014

Shalini Kumari
Affiliation:
Department of Physics and Institute for Functional Nanomaterials, University of Puerto Rico, San Juan, PR 00931-3334,USA
Nora Ortega
Affiliation:
Department of Physics and Institute for Functional Nanomaterials, University of Puerto Rico, San Juan, PR 00931-3334,USA
Ashok Kumar
Affiliation:
National Physical Laboratory (CSIR), Delhi, India.
Ram S. Katiyar
Affiliation:
Department of Physics and Institute for Functional Nanomaterials, University of Puerto Rico, San Juan, PR 00931-3334,USA
Get access

Abstract

We report magneto-dielectric anomaly of the multiferroic (Bi0.95Nd0.05)(Fe0.97Mn0.03)O3 (BNFM) ceramic near Néel temperature. The ceramic pellets were synthesized by conventional solid state reaction route. X-ray diffraction patterns revealed that most of the peaks shifted slightly towards higher Bragg’s angle compared to those of pure BiFeO3 and also confirmed the formation of rhombohedral phase. It also suggests that the small chemical substitution of Nd and Mn atoms at Bi and Fe sites of BiFeO3 (BFO) perovskite respectively does not alter the crystal structure. Temperature and frequency dependent dielectric response indicate large dielectric anomaly at 620 K, slightly below the known Néel temperature of BFO. The enhancement in dielectric properties of BNFM ceramic was observed as compared to BFO due to suppression of oxygen vacancies by the doping. Temperature dependent dielectric response in conjunction with Raman and thermo-analytical data show that the BNFM sample presents significant magneto-dielectric response around Néel temperture TN ∼ 620 K.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Eerenstein, W., Mathur, N. D., and Scott, J. F., Nature 442, 759765 (2006).CrossRefGoogle Scholar
Catalan, G., Scott, J. F., Adv. Mater. 21, 24632485 (2009).CrossRefGoogle Scholar
Lebeugle, D., Colson, D., Forget, A., Viret, M., Bonville, P., Marucco, J. F., and Fusil, S., Phys. Rev. B. 76, 024116(8pp) (2007).CrossRefGoogle Scholar
Smolenskii, G. A., and Chupis, I. E., Sov.Phys-Usp. 25 475-493 (1982).CrossRefGoogle Scholar
Ravindran, P., Vidya, R., Kjekshus, A., Fjellvag, H., Phys. Rev. B, 74, 224412(18pp) (2006).CrossRefGoogle Scholar
Palkar, V. R., Kundaliya, D. C., Malik, S. K., Bhattacharya, S., Phys. Rev. B, 69, 212102(23pp) (2004).CrossRefGoogle Scholar
Zhang, S. T., Zhang, Y., Lu, M. H., Du, C. L., Chen, Y. F., Liu, Z. G., Zhu, Y. Y., Ming, N. B., Pan, X. Q., Appl. Phys. Lett. 88, 162901(3pp) (2006).CrossRefGoogle Scholar
Yu, B., Li, M., Liu, J., Guo, D., Pei, L., and Zhao, X., J. Phys. D: Appl. Phys. 41 065003 (4pp) (2008).CrossRefGoogle Scholar
Yu, B., Li, M., Wang, J., Pei, L., Guo, D., Zhao, X., J. Phys. D: Appl. Phys. 41 185401(5pp) (2008).CrossRefGoogle Scholar
Zhang, Y., Zhang, H., Yin, J., Zhang, H., Chen, J., Wang, W., Wu, G., Journal of Magnetism, and Magnetic Materials, 322, 22512255 (2010).CrossRefGoogle Scholar
Pradhan, D. K., Choudhary, R. N. P., Rinaldi, C., and Katiyar, R. S., J. of App. Phy. 106, 024102(10pp) (2009).CrossRefGoogle Scholar
Zhu, X. H., Béa, H., Bibes, M., Fusil, S., Bouzehouane, K., Jacquet, E., Barthélémy, A., Lebeugle, D., Viret, M., and Colson, D. App. Phys. Lett. 93, 082902(3pp) (2008).CrossRefGoogle Scholar
Hu, Z., Li, M., Yu, B., Pei, L., Liu, J., Wang, J., and Zhao, X., J. Phys. D: Appl. Phys. 42, 185010 (5pp) (2009).CrossRefGoogle Scholar
Kawae, T., Tsuda, H., and Morimoto, A., App. Phys. Express 1, 051601(3pp) (2008).CrossRefGoogle Scholar
Hu, Z, Li, M., Yu, Y., Liu, J., Pei, L., Wang, J., Liu, X., Yu, B., and Zhao, X., Solid State Communications, 150, 10881091 (2010).CrossRefGoogle Scholar
Wang, T. H., Ding, Y., Tu, C. S., Yao, Y. D., Wu, K. T., Lin, T. C., Yu, H. H., Ku, C. S., and Lee, H. Y., J. Appl. Phys. 109, 07D907 (2011).CrossRefGoogle Scholar
Tu, C. S., Chien, R. R., Wang, T. H., Anthoninappen, J., and Peng, Y.T., J. Appl. Phys. 113, 17 D 908 (2013).CrossRefGoogle Scholar
Catalan, G., Sardar, K., Church, N. S., Scott, J. F., Harrison, R. J., and Redfern, S. A. T., Phys. Rev. B 79, 212415(4pp) (2009).CrossRefGoogle Scholar
Singh, M. K., Jang, H. M., Ryu, S., and Jo, M. H., Appl. Phys. Lett. 88, 42907(3pp) (2006).CrossRefGoogle Scholar
Haumont, R., Kreisel, j., Bouvier, P., Hippert, F., Phys. Rev. B, 73, 132101(4pp) (2006).CrossRefGoogle Scholar
Kothari, D., Reddy, V. R., Sathe, V. G., Gupta, A., Banerjee, A., Awasthi, A. M., J. of Magn. And Magn Mate. 320, 548552 (2008).CrossRefGoogle Scholar
Rout, D., Moon, K. S., Kang, S. J. L., J. Raman Spectrosc. 40, 618626 (2009).CrossRefGoogle Scholar
Kumar, A., Scott, J. F., and Katiyar, R. S., Phys. Rev. B, 85, 224410(4pp) (2012).CrossRefGoogle Scholar
Kumar, A., Murari, N. M., and Katiyar, R. S., Appl. Phys. Lett. 92, 152907(3pp) (2008).CrossRefGoogle Scholar