Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T02:12:01.813Z Has data issue: false hasContentIssue false

The Magnetochiral Effect in Charge Transport in Carbon Nanotubes

Published online by Cambridge University Press:  15 February 2011

Vojislav Krstic
Affiliation:
Grenoble High Magnetic Field Laboratory, MPI-FKF/CNRS, F-38042 Grenoble, France.
Siegmar Roth
Affiliation:
Max-Planck-Institut für Festkörperforschung, D-70569 Stuttgart, Germany.
Marko Burghard
Affiliation:
Max-Planck-Institut für Festkörperforschung, D-70569 Stuttgart, Germany.
Klaus Kern
Affiliation:
Max-Planck-Institut für Festkörperforschung, D-70569 Stuttgart, Germany.
Geert L.J.A. Rikken
Affiliation:
Grenoble High Magnetic Field Laboratory, MPI-FKF/CNRS, F-38042 Grenoble, France. Laboratoire Nationale des Champs Magnétiques Pulsés, CNRS/INSA/UPS, F-31432 Toulouse, France.
Get access

Abstract

Nanotubes forming carbon atoms arrange differently, resulting into three main types of carbon nanotubes: armchair, zigzag, chiral. Thus, depending on their type, nanotubes may be regarded as chiral, molecular electrical conductors. As a consequence of symmetry arguments, the magnetoresistance of such tubes depends on the relative orientation of the traversing current and the external magnetic field. Magnetotransport measurements on single walled carbon nanotubes have been performed showing the expected dependence on both the current and magnetic field. Further, the quantum-mechanical model of a free electron on a helix in an external magnetic field is discussed in order to provide indicators to possible microscopic mechanisms.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Iijima, S., Nature 56, 354 (1991)Google Scholar
2. Saito, R., Dresselhaus, G., Dresselhaus, M.S., in Physical Properties of Carbon Nanotubes, (Imperial College Press, London, 1998).Google Scholar
3. Joria, A., Saito, R., Lieber, C.M., Hunter, M., McClure, T., Dresselhaus, G., and Dresselhaus, M.S., Phys. Rev. Lett. 86, 11181121 (2001).Google Scholar
4. Wildoer, J.W.G, Venema, L.C., Rinzler, A.G., Smalley, R.E., and Dekker, C., Nature 391, 59 (1998) W. Clauss, M. Freitag, D.J. Bergeron, and A.T. Johnson, in Electronic Properties of Novel Materials - Science and Technology of Molecular nanostructures, XIII International Winterschool, Kirchberg, 1999, AIP Conference Proceedings 486, Eds: H. Kuzmany, J. Fink, M. Mehring, S.Roth, p. 308–312.Google Scholar
5. Cobden, D.H., Bockrath, M., McEuen, P.L., Rinzler, A.G., and Smalley, R.E., Phys Rev. Lett. 81, 681 (1996)Google Scholar
6. Bockrath, M., Cobden, D.H., Lu, J., Rinzler, A.G., Smalley, R.E., Balents, L., and McEuen, P.L., Nature 397, 598 (1999)Google Scholar
7. Bachtold, A., Strunk, C., Salvetat, J.P., Bonard, J.M., Forró, L., Nussbaumer, T., and Schönenberger, C., Nature 397, 673 (1999)Google Scholar
8. Frank, S., Poncharal, P., Wang, Z.L., and Heer, W. de, Science 280, 1744 (1998)Google Scholar
9. Krstic, V., Roth, S., and Burghard, M., Phys. Rev. B 62, R16353 (2000).Google Scholar
10. Miyamoto, Y., Louie, S.G., and Cohen, M.L., Phys. Rev. Lett. 76, 21212124 (1996).Google Scholar
11. Rikken, G.L.J.A., Raupach, E. and, Nature 390, 493494 (1997).Google Scholar
12. Rikken, G.L.J.A., E. and , Raupach, Phys. Rev. E 58, 50815084 (1998).Google Scholar
13. Rikken, G.L.J.A., Fölling, J., and Wyder, P., Phys. Rev. Lett. 87, 236602 (2001)Google Scholar
14. Krstic, V., Roth, S., Burghard, M., Kern, K., Rikken, G.L.J.A., J. Chem Phys. 117, 11315 (2002)Google Scholar
15. Tinoco, I., and Woody, R.W., J. Chem Phys. 40, 160 (1964)Google Scholar
16. Krstic, V., and Rikken, G.L.J.A., Chem. Phys. Lett. 364, 5156 (2002).Google Scholar