Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T17:25:57.975Z Has data issue: false hasContentIssue false

Magnetization, Magnetotransport and Ferromagnetic Resonance in A Permalloy Antidot Array with Square Holes

Published online by Cambridge University Press:  21 March 2011

Minghui Yu
Affiliation:
Advanced Materials Research Institute, University of New Orleans, 2000 Lakeshore Dr, New Orleans,LA, 70148
Leszek Malkinski
Affiliation:
Advanced Materials Research Institute, University of New Orleans, 2000 Lakeshore Dr, New Orleans,LA, 70148
Leonard Spinu
Affiliation:
Advanced Materials Research Institute, University of New Orleans, 2000 Lakeshore Dr, New Orleans,LA, 70148
Weilie Zhou
Affiliation:
Advanced Materials Research Institute, University of New Orleans, 2000 Lakeshore Dr, New Orleans,LA, 70148
Get access

Abstract

A Permalloy antidot array with square hole size 800?800 nm2 has been fabricated by the means of electron-beam lithography and lift-off techniques. An out-of-plane anisotropy was found in both the reference film of Permalloy and the antidot array with the thickness of 100 nm. Inhomogeneous current-density distribution and complex domain structures in the antidot nanostructure result in unique behavior of the magnetoresistance. Quantized standing spin-wave modes originating from the lateral confinement of the antidot nanostructure were clearly observed for the magnetic field applied normal to the array plane. Two uniform precession resonance modes occurred when the field deviated more than 30 degrees from the normal to the plane. These two resonances originate from different regions of the array having distinct dipolar field patterns with different orientation and magnitude of magnetostatic field. The easy axes of the anisotropy in these regions are in-plane and orthogonal to each other.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Adeyeye, A. O., Bland, J. A. C. and Daboo, C., Appl. Phys. Lett. 70, 3164 (1997).Google Scholar
2. Wang, C. C., Adeyeye, A. O., Singh, N., Huang, Y. S. and Wu, Y. H., Phys. Rev. B 72, 174426 (2005).Google Scholar
3. Cowburn, R. P., Adeyeye, A. O., and Bland, J. A. C., Appl. Phys. Lett. 70, 2309 (1997).Google Scholar
4. Heyderman, L. J., Nolting, F., Backes, D., Czekaj, S., Lopez-Diaz, L., Klaui, M Rudiger, U., Vaz, C A. F., Bland, J. A. C., Matelon, R. J., Volkmann, U. G., and Fischer, P., Phys. Rev. B 73, 214429 (2006).Google Scholar
5. Vovk, A., Malkinski, L., Golub, V., Whittenburg, S., O'Connor, C., Jung, J. S., and Min, S. H., J. Appl. Phys. 97, 10J506 (2005).Google Scholar
6. Youssef, J. B., Vukadinovic, N., Billet, D., and Labrune, M., Phys. Rev. B, 69, 174402 (2004).Google Scholar
7. Saito, N., Fujiwara, H., and Sugita, Y., J. Phys. Soc. Jpn. 19, 1116 (1964).Google Scholar
8. Kakazei, G.N., Wigen, P.E., Guslienko, K.Y., Chantrell, R.W., Lesnik, N.A., Metlushko, V., Shima, H., Fukamichi, K., Otani, Y., Novosad, V., J. Appl. Phys. 93, 8418 (2003).Google Scholar
9. Gil, W., Gorlitz, D., Horisberger, M., Kotzler, J., Phys. Rev. B, 72, 134401 (2005).Google Scholar
10. Yu, C. T., Pechan, M. J., Burgei, W. A., and Mankey, G. J., J. Appl. Phys. 95, 6648 (2004).Google Scholar