Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-29T07:26:49.506Z Has data issue: false hasContentIssue false

Magnetization Loops in Fe/Ag/Fe/Ni (001) Structures

Published online by Cambridge University Press:  03 September 2012

B. Heinrich
Affiliation:
Physics Department, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6
Z. Celiński
Affiliation:
Physics Department, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6
H. Konno
Affiliation:
Physics Department, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6
A. S. Arrott
Affiliation:
Physics Department, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6
M. Rührig
Affiliation:
Institut für Werkstoffwissenschaften der Universität Erlangen-NüMberg, Martensstr. 7, D-91058 Erlangen, Germany
A. Hubert
Affiliation:
Institut für Werkstoffwissenschaften der Universität Erlangen-NüMberg, Martensstr. 7, D-91058 Erlangen, Germany
Get access

Abstract

The lattice reconstructed bec Ni (001) in Fe/Ni (001) ultrathin layers allows one to engineer films in which the in-plane 4-fold anisotropies and coercive fields can be varied and adjusted according to specific requirements. Magnetization reversals have been studied in layered structures of Fe/Ag/Fe/Ni (001). For Ag (001) interlayers thicker than 13 ML Magnetization reversal can proceed in two steps. In these samples the minor loops switch the magnetization of the Fe (001) layer from the parallel to the antiparallel configurations with respect to the magnetic moment of the Fe/Ni film. Such Minor loops exhibit a rectangular behavior with switching fields of 15–25 Oe. The lattice transformed Fe/Ni layers could be useful in spin-valve structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Heinrich, B., Arrott, A. S., Cochran, J. F., Liu, C. and Myrtle, K., J. Vac. Sci. Technol. A 4 1376 (1986).Google Scholar
2. Wang, Z. Q., Li, Y. S., Jona, F. and Marcus, P. M., Sol. St. Comm. 61, 623 (1987).Google Scholar
3. Heinrich, B., Purcell, S. T., Dutcher, J. R., Urquhart, K. B., Cochran, J. F. and Arrott, A. S., Phys. Rev. B 38, 12879 (1988).Google Scholar
4. Heinrich, B., Cochran, J. F., Arrott, A. S., Purcell, S. T., Urquhart, K. B., Dutcher, J. R. and Egelhoff, W. F. Jr, Appl. Phys. A 49, 473 (1989).Google Scholar
5. Jiang, D. T., Alberding, N., Seary, A. J., Heinrich, B., and Crozier, E. D., Physica B 158, 662 (1989).Google Scholar
6. Heinrich, B., Arrott, A. S., Cochran, J. F., Urquhart, K. B., Myrtle, K., Celiński, Z. and Zhong, Q. M., Mat. Res. Soc. Symp. Proc. 151, 177 (1989).Google Scholar
7. Moruzzi, V. L. and Marcus, P. M., Phys. Rev. B 38, 1613 (1988).Google Scholar
8. Heinrich, B., Kirschner, J., Kowalewski, M., Cochran, J. F., Celiński, Z. and Arrott, A. S., Phys. Rev. B 44, 9348 (1991).Google Scholar
9. Celiński, Z., Heinrich, B. and Cochran, J. F., J. Appl. Phys. 73, (1993), in press.Google Scholar
10. Hubert, A. and Rührig, M., J. Appl. Phys. 69, 6072 (1991).Google Scholar