No CrossRef data available.
Published online by Cambridge University Press: 03 March 2011
Multiferroics, the study of materials which possess ferromagnetic and ferroelectric ordering in a single phase, has become an area of prominent research. Moreover, this behavior has been extensively studied in materials which possess a perovskite crystal structure such as BiFeO3 and YMnO3. Due to their weak saturation magnetic moment, many rare-earth orthoferrites are currently of extreme interest. Utilizing a solid-state reaction between Y2O3 and Fe2O3 we have developed the rare-earth orthoferrite YFeO3 and conducted a bulk material study to determine this material’s availability for thin film multiferroic research. The absence of Y2O3 and Fe2O3 impurities was confirmed using Copper-Kα XRD. Examination of the dependence of the magnetization M on the temperature T was conducted to determine the reliability of multiferroic behavior across varying temperatures in conjunction with the investigation of the dependence of M on the electric field strength H. Results clearly display ferromagnetic behavior in our bulk material, providing ample evidence that our bulk material is an excellent candidate for thin film studies. Future studies on multiferroic YFeO3 thin films grown via pulsed laser deposition on Lanthanum Aluminate substrates will be conducted. Detailed data will be provided via XRD and SQUID to confirm magnetic properties while impurities are non-existent in our thin films.