Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T06:56:16.850Z Has data issue: false hasContentIssue false

Magnetically Controlled Photovoltaic Diode Structure

Published online by Cambridge University Press:  01 February 2011

V. K. Dugaev
Affiliation:
Department of Electronics and Communications, Instituto Superior de Engenharia de Lisboa, Rua Conselheiro Emidio Navarro, 1949-014 Lisbon, Portugal Institute for Materials Science Problems, Vilde 5, 58001 Chernovtsy, Ukraine
Yu. Vygranenko
Affiliation:
Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
M. Vieira
Affiliation:
Department of Electronics and Communications, Instituto Superior de Engenharia de Lisboa, Rua Conselheiro Emidio Navarro, 1949-014 Lisbon, Portugal
V. I. Litvinov
Affiliation:
WaveBand Corporation, Suite 1105, 375 Van Ness Ave., Torrance, CA 90501
J. Barnaś
Affiliation:
Department of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznań, and Institute of Molecular Physics, Polish Academy of Sciences, ul. M. Smoluchowskiego 17, 60-179 Poznań, Poland
Get access

Abstract

We propose a new integrated device for spintronics application, which is based on a hybrid metal-semiconductor structure. The device consists of a Si-based p-i-n photodetector sandwiched between two layers of a ferromagnetic metal (3d ferromagnet or half-metallic compound). The photocurrent flowing in such a system is shown to depend on its magnetic configuration. This, in turn, allows controlling the device performance by an externally applied magnetic field. We have estimated magnitude of the effect and also determined the role of relevant material parameters.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wolf, S. A., Awschalom, D. D., Buhrman, R. A., Daughton, J. M., Molnar, S. von, Roukes, M. L., Chtchelkanova, A. Y., and Treger, D. M., Science 294, 1488 (2001).Google Scholar
2. Schmidt, G., Richter, G., Grabs, P., Gould, C., Ferrand, D., and Molenkamp, L. W., Phys. Rev. Lett. 87, 227203 (2001).Google Scholar
3. Ohno, H. and Matsukura, F., Sol. State Communs 117, 179 (2001).Google Scholar
4. Rashba, E. I., Phys. Rev. B 62, R16267 (2000).Google Scholar
5. Fert, A. and Jaffres, H.. Phys. Rev. B 64, 184420 (2001).Google Scholar
6. Levy, P. M., In: Solid State Physics, edited by Seitz, F., Turnbull, D., Ehrenreich, H., (Academic, New York, 1994), vol. 47, p.367.Google Scholar
7. Gijs, M. A. M. and Bauer, G. E. W., Adv. Phys. 46, 285 (1997).Google Scholar
8. Ansermet, J. Ph., J. Phys. Cond. Matter. 10, 6027 (1998).Google Scholar
9. Barthelemy, A., Fert, A., and Petroff, F.. In: Handbook of Magnetic Materials, edited by Buschow, K. H.J. (Elsevier, Amsterdam, 1999), vol. 12.Google Scholar
10. žutić, I., Fabian, J., and Sarma, S. Das, Phys. Rev. B 64, 121201 (2001).Google Scholar
11. Sze, S. M.. Physics of Semiconductor Devices (Wiley, New York, 1981).Google Scholar