Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T19:47:13.607Z Has data issue: false hasContentIssue false

Magnetic Spin Valve Sensors with Different Geometry to Magnetic Bead Detection for Biosensor Application

Published online by Cambridge University Press:  26 February 2011

Jeong Dae Suh
Affiliation:
[email protected], Electronics and Telecommunications Research Institute, Medical Information Convergence Team, 138 Gajeongno, Daejeon, 305-350, Korea, Republic of
Myung Ae Chung
Affiliation:
[email protected], Electronics and Telecommunications Research Institute, Medical Information Convergence Team, 138 Gajeongno, Daejeon, 305-350, Korea, Republic of
Get access

Abstract

We have demonstrated the use of highly sensitive spin valve sensors for the detection of micron magnetic beads. By using a ring type, cross type, and meander line type sensors, we were able to detect the presence of 2.8 μm size magnetic beads in real time by direct measurement of magnetic dipole fields from magnetic beads. The sensitivity of the ring, cross and meander line sensors were obtained about 50 μV/Oe, 7 μV/Oe, 30 μV/Oe and sensor output signals of 50 μV , 30 μV, 90 μV were obtained in an external applied field of 10 Oe and 1 mA sense current. Our results shows that ring, cross, and meander line shape spin valve sensors are very promising candidates for the detection of biomolecules with magnetic labels.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Baselt, D. R., Lee, G. U., Natesan, M., Metzger, S. W., Sheehan, P. E., and Colton, R. J., Biosens. Bioelectron. 13, 731 (1998).10.1016/S0956-5663(98)00037-2Google Scholar
2. Rife, J. C., Miller, M. M., Sheehan, P. E., Tamanaha, C. R., Tondra, M., and Whiteman, L. J., Sens. Actu. A107, 209 (2003).10.1016/S0924-4247(03)00380-7Google Scholar
3. Schotter, J., Kamp, P. B., Becker, A., Puhler, A., Reiss, G., and Bruckl, H., Biosen. Bioelectron. 19, 1149 (2004).10.1016/j.bios.2003.11.007Google Scholar
4. Graham, D. L., Ferreira, H., Bernardo, J., Freitas, P. P., and J. Cabral, M. S., J. Appl. Phys. 91, 7786 (2002).10.1063/1.1451898Google Scholar
5. Li, G., Joshi, V., White, R. L., Wang, S. X., Kemp, J. T., Webb, C., Davis, R. W., and Sun, S., J. Appl.Phys. 93, 7557 (2003).10.1063/1.1540176Google Scholar
6. Ferreira, H. A., Cardoso, F. A., Ferreira, R., Cardoso, S., and Freitas, P. P., J. Appl. Phys. 99, 08P105 (2006).10.1063/1.2162342Google Scholar
7. Li, G., Sun, S., Wilson, R. J., White, R. L., Pourmand, N., and Wang, S. X., Sen. Actu. A126, 98 (2006).10.1016/j.sna.2005.10.001Google Scholar
8. Miller, M. M., Prinz, G. A., Cheng, S. F. and Bounnak, S., Appl. Phys. Lett. 81, 2211 (2002).10.1063/1.1507832Google Scholar
9. Ejsing, L., Hansen, M. F., Menon, A. K., Ferreira, H. A., Graham, P. L., Freitas, P. P., Appl. Phys. Lett. 84, 4729 (2004).10.1063/1.1759380Google Scholar
10. Ejsing, L., Hansen, M. F., Menon, A. K., Ferreira, H. A., Graham, P. L., Freitas, P. P., J. Mag. Mag. Mater. 293, 677 (2005).10.1016/j.jmmm.2005.02.071Google Scholar